




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算錯誤的是()A.a?a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a42.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設原來的平均車速為xkm/h,則根據題意可列方程為A. B.C. D.3.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<14.下列圖形不是正方體展開圖的是()A. B.C. D.5.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°6.某校舉行運動會,從商場購買一定數(shù)量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.7.一組數(shù)據:3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據的中位數(shù)是()A.2 B.3 C.5 D.78.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°9.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④10.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6二、填空題(本大題共6個小題,每小題3分,共18分)11.化簡:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.12.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數(shù)根,則a的取值范圍為________.13.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內角和是其外角和的2倍.③函數(shù)y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.14.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.15.二次根式中,x的取值范圍是.16.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.三、解答題(共8題,共72分)17.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO18.(8分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉90°得到線段MD,連接CD,BD.設點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標與直線l的表達式;(2)①直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.19.(8分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長.20.(8分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)21.(8分)九(1)班同學分成甲、乙兩組,開展“四個城市建設”知識競賽,滿分得5分,得分均為整數(shù).小馬虎根據競賽成績,繪制了如圖所示的統(tǒng)計圖.經確認,扇形統(tǒng)計圖是正確的,條形統(tǒng)計圖也只有乙組成績統(tǒng)計有一處錯誤.(1)指出條形統(tǒng)計圖中存在的錯誤,并求出正確值;(2)若成績達到3分及以上為合格,該校九年級有800名學生,請估計成績未達到合格的有多少名?(3)九(1)班張明、李剛兩位成績優(yōu)秀的同學被選中參加市里組織的“四個城市建設”知識競賽.預賽分為A、B、C、D四組進行,選手由抽簽確定.張明、李剛兩名同學恰好分在同一組的概率是多少?22.(10分)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.23.(12分)(1)計算:;(2)化簡,然后選一個合適的數(shù)代入求值.24.已知a+b=3,ab=2,求代數(shù)式a3b+2a2b2+ab3的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數(shù)冪的乘法;負整數(shù)指數(shù)冪.2、A【解析】
直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設原來的平均車速為xkm/h,則根據題意可列方程為:﹣=1.故選A.【點睛】本題主要考查了由實際問題抽象出分式方程,根據題意得出正確等量關系是解題的關鍵.3、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.4、B【解析】
由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.5、D【解析】
根據鄰補角的定義求出與外角相鄰的內角,再根據等腰三角形的性質分情況解答.【詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內角為180°?100°=80°,當80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點睛】本題考查了等腰三角形的性質,解題的關鍵是熟練的掌握等腰三角形的性質.6、B【解析】試題分析:設每個筆記本的價格為x元,根據“用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程7、C【解析】分析:眾數(shù)是指一組數(shù)據中出現(xiàn)次數(shù)最多的那個數(shù)據,一組數(shù)據可以有多個眾數(shù),也可以沒有眾數(shù);中位數(shù)是指將數(shù)據按大小順序排列起來形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據.根據定義即可求出答案.詳解:∵眾數(shù)為5,∴x=5,∴這組數(shù)據為:2,3,3,5,5,5,7,∴中位數(shù)為5,故選C.點睛:本題主要考查的是眾數(shù)和中位數(shù)的定義,屬于基礎題型.理解他們的定義是解題的關鍵.8、D【解析】
①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.9、C【解析】
根據正方形的判定定理即可得到結論.【詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【點睛】本題考查了正方形的判定,是一道幾何結論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.10、D【解析】
本題應對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的提點靈活選用合適的方法.本題運用的是因式分解法.二、填空題(本大題共6個小題,每小題3分,共18分)11、(a+1)1.【解析】
原式提取公因式,計算即可得到結果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【點睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.12、a≤且a≠1.【解析】
根據一元二次方程有實數(shù)根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據題意列出關于a的不等式組是解答此題的關鍵.13、②④⑤【解析】
根據不等式的性質可確定①的對錯,根據多邊形的內外角和可確定②的對錯,根據函數(shù)自變量的取值范圍可確定③的對錯,根據三角形中位線的性質可確定④的對錯,根據正方形的性質可確定⑤的對錯.【詳解】①“若a>b,當c<0時,則<,故①是假命題;②六邊形的內角和是其外角和的2倍,根據②真命題;③函數(shù)y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【點睛】本題考查了不等式的性質、多邊形的內外角和、函數(shù)自變量的取值范圍、三角形中位線的性質、正方形的性質,解答本題的關鍵是熟練掌握各知識點.14、【解析】
解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據折疊對稱的性質,A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.15、.【解析】根據二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.16、6.【解析】
作輔助線,根據反比例函數(shù)關系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質得OB與OA的比,由同高兩三角形面積的比等于對應底邊的比可以得出結論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數(shù)y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.三、解答題(共8題,共72分)17、3【解析】試題分析:本題考查了相似三角形的判定與性質,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO18、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】
(1)當y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達式;(2)分當點M在AO上運動時,當點M在OB上運動時,進行討論可求D點坐標,將D點坐標代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當點M在AO上運動時,即0<t<3時,當點M在OB上運動時,即3≤t≤4時,進行討論可求P點坐標.【詳解】(1)當y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側,∴A(﹣3,0),B(1,0),由解析式得C(0,),設直線l的表達式為y=kx+b,將B,C兩點坐標代入得b=mk﹣,故直線l的表達式為y=﹣x+;(2)當點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M在AB上運動,∴當CM⊥AB時,CM最短,CD最短,即CM=CO=,根據勾股定理得CD最?。唬?)當點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質,等邊三角形的性質,三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強,有一定的難度.19、(1)見解析;(1)OE=1.【解析】
(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結論;
(1)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結論.【詳解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴?ABCD是菱形;(1)∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==1,∴OE=OA=1.【點睛】此題主要考查了菱形的判定和性質,平行四邊形的判定和性質,角平分線的定義,勾股定理,判斷出CD=AD=AB是解本題的關鍵20、(1)i)證明見試題解析;ii);(2);(3).【解析】
(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點睛】本題考查相似三角形的判定與性質;正方形的性質;矩形的性質;菱形的性質.21、(1)見解析;(2)140人;(1).【解析】
(1)分別利用條形統(tǒng)計圖和扇形統(tǒng)計圖得出總人數(shù),進而得出錯誤的哪組;(2)求出1分以下所占的百分比即可估計成績未達到合格的有多少名學生;(1)根據題意可以畫出相應的樹狀圖,從而可以求得張明、李剛兩名同恰好分在同一組的概率.【詳解】(1)由統(tǒng)計圖可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全體(%)512.5101517.5乙組得分的人數(shù)統(tǒng)計有誤,理由:由條形統(tǒng)計圖和扇形統(tǒng)計圖的對應可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙組得5分的人數(shù)統(tǒng)計有誤,正確人數(shù)應為:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如圖得:∵共有16種等可能的結果,所選兩人正好分在一組的有4種情況,∴所選兩人正好分在一組的概率是:.【點睛】本題考查列表法與樹狀圖法、用樣本估計總體、條形統(tǒng)計圖、扇形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五物流公司勞動合同
- 鋪位租賃合同書協(xié)議書
- 圍擋安裝施工合同書二零二五年
- 二零二五版鋼板的租賃合同書范例
- 2025國有企業(yè)股權轉讓合同范本
- 2025深圳商品房預售合同書范文
- 2025員工試用期合同模板下載
- 2025自動化設備購銷合同
- 消化道穿孔病人術前護理
- 2025租房租賃合同范本協(xié)議
- 義務兵家庭優(yōu)待金審核登記表
- GA 255-2022警服長袖制式襯衣
- GB/T 5202-2008輻射防護儀器α、β和α/β(β能量大于60keV)污染測量儀與監(jiān)測儀
- GB/T 39560.4-2021電子電氣產品中某些物質的測定第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS測定聚合物、金屬和電子件中的汞
- GB/T 3452.4-2020液壓氣動用O形橡膠密封圈第4部分:抗擠壓環(huán)(擋環(huán))
- 計劃生育協(xié)會基礎知識課件
- 【教材解讀】語篇研讀-Sailing the oceans
- 抗腫瘤藥物過敏反應和過敏性休克
- 排水管道非開挖預防性修復可行性研究報告
- 交通工程基礎習習題及參考答案
- 線路送出工程質量創(chuàng)優(yōu)項目策劃書
評論
0/150
提交評論