




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ExtremeValuesofFunctionsofSeveralVariablesReviewWhatisthegradient(gradientvector)ofafunctionz=f(x,y)atapoint(a,b)?Whatisthegeometricsignificanceofthegradientofafunctionatpoint?Howtofindthedirectionalderivativeofafunctionatapoint(a,b)?Ifz=f(x,y),FindtangentplaneatthepointIfz=f(x,y),FindtotaldifferentialatthepointRecallFunctionsofone-variableLocalMaxLocalMin.StationarypointNeither非駐點(diǎn)InflectionpointFunctionsoftwovariablesDomain(M0
interiorpointin
D)Localminimum,alsoglobalminimumlocalmaximum/alsoglobalmaximumLocalmaxLocalminLocalmaxLocalminLocalmaxLocalminGlobalmaxGlobalminimumAlsolocalmaximumNotlocalminiHowtoFind?NecessaryconditionRecallAnecessaryconditionisalocalextremum,TheordoesnotexistForFunctionoftwovariables?ForFunctionoftwovariablesIf
attainsitslocalextremumatThenThegradientthereis0ordoesnotexistGeometricinterpretationExample:FindcandidatepointsofextremepointsSolutionStationarypoint在點(diǎn)(1,0)處取得極小值-1看上去這是一個(gè)橢圓拋物面極小值點(diǎn)
with(plots):x_axis:=plot3d([u,0,0],u=0..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=0..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):qumian:=implicitplot3d({z=x^2-x*y+y^2-2*x+y},x=-2..3,y=-2..2,z=-2..2,scaling=constrained,style=patchcontour,numpoints=10000,contours=20):display(qumian,x_axis,y_axis,z_axis,orientation=[40,70]);contourplot(x^2-x*y+y^2-2*x+y,x=-1..3,y=-2..2,contours=30,thickness=2);SolutionStationarypointsExample:Findcandidatepointsofextremepointswith(plots):contourplot(x^4+y^4-4*x*y,x=-1..1,y=-1..1,thickness=2,contours=50,coloring=[red,green]);SaddlepointSolutionStationarypointEample:FindcandidatepointsofextremepointsCriticalpointThepartialderivativedoesnotexist,sothegradientdoesnotexistat(0,0),but…qumian:=plot3d([abs(y)*cos(t),abs(y)*sin(t),y],y=0..1,t=0..2*Pi,grid=[30,30]):x_axis:=plot3d([u,0,0],u=-1..1,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-1..1,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..2,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis);Wenowknowhowtofindcandidatesforpossiblelocalextrema,buthowtodeterminethenatureofacandidate:whetherornotitisalocalmaximum,localminimumorneither.Asufficientcondition:secondderivativetestIfisastationarypoint:AndisalocalextremumthenLocalminimumLocalmaximumSaddlepoint,notlocalextremuminconclusiveExample:FindlocalExtremaSolution:FindcriticalpointsfirstStationarypointSothereisalocalextremumandsoLocalminimumAttainsalocalminimumat(1,0)with(plots):x_axis:=plot3d([u,0,0],u=0..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=0..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):qumian:=implicitplot3d({z=x^2-x*y+y^2-2*x+y},x=-2..3,y=-2..2,z=-2..2,scaling=constrained,style=patchcontour,numpoints=10000,contours=20):display(qumian,x_axis,y_axis,z_axis,orientation=[40,70]);contourplot(x^2-x*y+y^2-2*x+y,x=-1..3,y=-2..2,contours=30,thickness=2);StationarypointsExample:FindlocalExtremaSolution:FindcriticalpointsfirstStationarypointsnoandsoLocalminimumyesAlsolocalminimumsowith(plots):qumian:=implicitplot3d(z=x^4+y^4-4*x*y,x=-2..2,y=-2..2,z=-2..3,numpoints=5000,style=patchcontour):x_axis:=plot3d([u,0,0],u=-1..3,v=0..0.01,thickness=3):y_axis:=plot3d([0,u,0],u=-1..1.5,v=0..0.01,thickness=3):z_axis:=plot3d([0,0,u],u=-1..3,v=0..0.01,thickness=3):display(qumian,x_axis,y_axis,z_axis,orientation=[-28,45]);with(plots):contourplot(x^4+y^4-4*x*y,x=-1..1,y=-1..1,thickness=2,contours=50,coloring=[red,green]);SaddlepointFindallthelocalmaxima,localminima,andsaddlepointsofthefunctionEND例解:先求駐點(diǎn)駐點(diǎn)無(wú)極值所以不是極值z(mì)=xy無(wú)極值
(0,0)是鞍點(diǎn)雙曲拋物面鞍點(diǎn)
with(plots):qumian:=implicitplot3d(x*y=z,x=-2..2,y=-2..2,z=-2..2,grid=[15,15,15],style=patchcontour,contours=20):x_axis:=plot3d([u,0,0],u=-2..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-2..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis,orientation=[-17,66],scaling=constrained);證設(shè)在點(diǎn)處取得極大值,則一元函數(shù)在點(diǎn)處取得極大值同理可得由一元函數(shù)極值的必要條件所以曲面z=f(x,y)在點(diǎn)(x0,y0,z0)有切平面:極值的必要條件的幾何解釋則設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)取得極值水平的切平面Geometricinterpretation多么驚人的類(lèi)似!極值的必要條件的梯度形式可記為:即比較:一元函數(shù)極值的必要條件:這種說(shuō)法適用于n元函數(shù)多元函數(shù)取得極值得必要條件是:梯度為零矢駐點(diǎn)(stationarypoint)駐點(diǎn)(x0,y0):推論:有偏導(dǎo)數(shù)的極值點(diǎn)必為駐點(diǎn)駐點(diǎn)就是梯度為零矢的點(diǎn)注1駐點(diǎn)不一定是極值點(diǎn)例如雙曲拋物面得駐點(diǎn):(0,0)但z=f(0,0)=0不是極值:但在(0,0)的任何鄰域內(nèi),函數(shù)值有正有負(fù)。非極值點(diǎn)的駐點(diǎn)稱為鞍點(diǎn)(saddlepoint)qumian:=implicitplot3d(x*y=z,x=-2..2,y=-2..2,z=-2..2,color=yellow,grid=[15,15,15]):pingmian:=implicitplot3d(x=0.6,x=-2..2,y=-2..2,z=-2..2,color=green):x_axis:=plot3d([u,0,0],u=-2..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-2..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis,orientation=[-17,66],scaling=constrained);鞍點(diǎn)SaddlepointThesaddlepointThesaddle在鞍點(diǎn)處,切平面將穿過(guò)曲面注2極值點(diǎn)不一定是駐點(diǎn)例如圓錐面在原點(diǎn)(0,0)取得極小值因?yàn)闃O值點(diǎn)不一定有偏導(dǎo)數(shù)但在原點(diǎn)(0,0),函數(shù)沒(méi)有偏導(dǎo)數(shù)qumian:=plot3d([abs(y)*cos(t),abs(y)*sin(t),y],y=0..1,t=0..2*Pi,grid=[30,30]):x_axis:=plot3d([u,0,0],u=-1..1,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-1..1,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..2,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis);以前曾經(jīng)講過(guò)設(shè)證明:偏導(dǎo)數(shù)fx(0,0)和fy(0,0)不存在證不存在同理,fy(0,0)也不存在上半圓錐面無(wú)偏導(dǎo)數(shù)無(wú)導(dǎo)數(shù)圓錐面在頂點(diǎn)無(wú)切平面原點(diǎn)是函數(shù)的奇點(diǎn)以上二元函數(shù)的極值的概念、極值的必要條件:梯度=零矢均可推廣到三元、四元乃至n元函數(shù)極值的充分條件?回憶:一元函數(shù)極值的充分條件極值的充分條件(二階):是極小值是極大值二元函數(shù)極值的充分條件定理讀書(shū)是駐點(diǎn):二階偏導(dǎo)數(shù)注:此時(shí)(x0,y0)是鞍點(diǎn)是極值是極小值是極大值不是極值注:此時(shí),A與C同號(hào)可能是極值也可能不是極值即,此法不能確定f(x0,y0)是否為極值須利用更高階的偏導(dǎo)數(shù)進(jìn)行判定極值充分條件的證明涉及二元函數(shù)的泰勒公式從略例解:先求駐點(diǎn)駐點(diǎn)有極值又所以是極小值在點(diǎn)(1,0)處取得極小值-1看上去這是一個(gè)橢圓拋物面極小值點(diǎn)
with(plots):x_axis:=plot3d([u,0,0],u=0..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=0..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):qumian:=implicitplot3d({z=x^2-x*y+y^2-2*x+y},x=-2..3,y=-2..2,z=-2..2,scaling=constrained,style=patchcontour,numpoints=10000,contours=20):display(qumian,x_axis,y_axis,z_axis,orientation=[40,70]);contourplot(x^2-x*y+y^2-2*x+y,x=-1..3,y=-2..2,contours=30,thickness=2);例解:先求駐點(diǎn)駐點(diǎn)駐點(diǎn)無(wú)極值又所以是極小值有極值也是極小值同理with(plots):qumian:=implicitplot3d(z=x^4+y^4-4*x*y,x=-2..2,y=-2..2,z=-2..3,numpoints=5000,style=patchcontour):x_axis:=plot3d([u,0,0],u=-1..3,v=0..0.01,thickness=3):y_axis:=plot3d([0,u,0],u=-1..1.5,v=0..0.01,thickness=3):z_axis:=plot3d([0,0,u],u=-1..3,v=0..0.01,thickness=3):display(qumian,x_axis,y_axis,z_axis,orientation=[-28,45]);褲子?with(plots):contourplot(x^4+y^4-4*x*y,x=-1..1,y=-1..1,thickness=2,contours=50,coloring=[red,green]);鞍點(diǎn)例解:先求駐點(diǎn)駐點(diǎn)無(wú)極值所以不是極值z(mì)=xy無(wú)極值
(0,0)是鞍點(diǎn)雙曲拋物面鞍點(diǎn)
with(plots):qumian:=implicitplot3d(x*y=z,x=-2..2,y=-2..2,z=-2..2,grid=[15,15,15],style=patchcontour,contours=20):x_axis:=plot3d([u,0,0],u=-2..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-2..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis,orientation=[-17,66],scaling=constrained);再論極值的充分條件:用Hesse矩陣設(shè)(x0,y0)是駐點(diǎn):或作f(x,y)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江北新區(qū)聯(lián)盟2025年下學(xué)期普通高中初三教學(xué)質(zhì)量檢測(cè)試題(一)數(shù)學(xué)試題含解析
- 綿陽(yáng)市三臺(tái)縣2024-2025學(xué)年四年級(jí)數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析
- 山西省朔州市右玉縣2024-2025學(xué)年下學(xué)期初三語(yǔ)文試題5月質(zhì)量檢查考試試卷含解析
- 武漢東湖學(xué)院《光譜學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年土木工程專(zhuān)業(yè)考研試題及答案
- 2025年語(yǔ)文教師資格考試試卷及答案
- 四川省廣元市蒼溪縣2024-2025學(xué)年初三下期末語(yǔ)文試題試卷含解析
- 吉林省長(zhǎng)春市德惠市市級(jí)名校2024-2025學(xué)年初三第一次考試英語(yǔ)試題試卷含答案
- 2025年職稱英語(yǔ)考試試題及答案
- 2025年影視編導(dǎo)專(zhuān)業(yè)課程考試試卷及答案
- T-CEEAS 004-2021 企業(yè)合規(guī)師職業(yè)技能評(píng)價(jià)標(biāo)準(zhǔn)
- 林教頭風(fēng)雪山神廟【區(qū)一等獎(jiǎng)】-完整版課件
- 兒童生長(zhǎng)發(fā)育專(zhuān)項(xiàng)能力提升項(xiàng)目-初級(jí)結(jié)業(yè)考試卷
- 天津市新版就業(yè)、勞動(dòng)合同登記名冊(cè)
- 改性環(huán)氧樹(shù)脂薄層鋪裝方案
- 產(chǎn)品追溯及模擬召回演練計(jì)劃
- 合同到期協(xié)議書(shū)(3篇)
- IPC-A-610國(guó)際標(biāo)準(zhǔn)中英文對(duì)照(doc 17)
- 山大《毛澤東思想和中國(guó)特色社會(huì)主義理論體系概論》教案第3章 社會(huì)主義改造理論
- 上海市高考語(yǔ)文備考之名著閱讀《紅樓夢(mèng)》分章回練習(xí):第六回(無(wú)答案)
- 最新中建CI報(bào)價(jià)單-2013.
評(píng)論
0/150
提交評(píng)論