通信原理英文版教學(xué)課件:class two version 2_第1頁(yè)
通信原理英文版教學(xué)課件:class two version 2_第2頁(yè)
通信原理英文版教學(xué)課件:class two version 2_第3頁(yè)
通信原理英文版教學(xué)課件:class two version 2_第4頁(yè)
通信原理英文版教學(xué)課件:class two version 2_第5頁(yè)
已閱讀5頁(yè),還剩76頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

SignalandNoiseinCommunicationsSystemsIncommunicationsystems,thereceivedwaveformisusuallycategorizedintothedesiredpartcontainingtheinformationandtheextraneousorundesiredpart.Thedesiredpartiscalledthesignal,andtheundesiredpartiscallednoise.Noiseisoneofthemostcriticalandfundamentalconceptsaffectingcommunicationsystems.Theentiresubjectofcommunicationsystemisallaboutmethodstoovercomethedistortingorbadeffectsofnoise.Todoso,understandingrandomvariablesandrandomprocessesbecomesquiteessential.TypicalnoisesourceClassificationofSignalsWhatisSignal?Anyphysicalquantitythatvarieswithtime,spaceoranyotherindependentvariablesiscalledasignal.Itisthecarrierofmessage.Themeaningfuloreffectivecontentincludedinthemessageisinformation.

ClassificationofSignalsThereareseveralwaystocharacterizethesignals:Continuous-timesignalvs.discrete-timesignalContinuousvaluedsignalvs.discrete-valuedsignal

Continuous-timeandcontinuousvalued:analogsignal(speech)Discrete-timeanddiscretevalued:digitalsignal(CD)Discrete-timeandcontinuousvalued:sampledsignalContinuous-timeandDiscretevalued:quantizedsignal

DeterministicSignalsandRandomSignals

EnergySignalsandPowerSignals

Energy:E=s2(t)dt;

Power:Energysignalhasfiniteenergy,butitsaveragepowerequals0.Physicallyrealizablewaveformsareofenergy-typePowersignalhasfiniteaveragepower,longduration,soitsenergyequalsinfinity.

DeterministicSignal:Thevalueatanytimearedeterministicandpredictable.RandomSignal:Indeterministicandunpredictable.However,theyhavestatisticcharacteristics.CharacteristicsofDeterminationSignalinfrequencydomainFrequencyspectrumofpowersignal:lets(t)beaperiodicpowersignal,itsperiodisT0,thenwehave

where0=2/T0=2f0

∵C(jn0)isacomplexfunction,

∴C(jn0)=|Cn|ejnwhere|Cn|-amplitudeofthecomponentwithfrequencynf0

n

-phaseofthecomponentwithfrequencynf0Fourierseriesofsignals(t):

?

【Example2.1】Findthespectrumofaperiodicrectangularwave.

Solution:AssumetheperiodofaperiodicrectangularwaveisT,thewidthis,andtheamplitudeisV,then

Itsfrequencyspectrumis

FrequencyspectrumfigureFrequencyspectraldensityofenergysignals

Letanenergysignalbes(t),thenitsfrequencyspectraldensityis

TheinverseFouriertransformofS()istheoriginalsignal:【Example2.3】Findthefrequencyspectraldensityofarectangularpulse.Solution:LettheexpressionoftherectangularpulsebeThenitsfrequencyspectraldensityisitsFouriertransform:?Frequencyspectrumfigure【Example2.4】Findthewaveformandthefrequencyspectraldensityofasamplefunction.

Solution:Thedefinitionofthesamplefunctionis

thefrequencyspectraldensitySa(t)is:

Fromtheaboveequation,weseethatSa()isagatefunction.【Example2.5】Findtheunitimpulsefunctionanditsfrequencyspectraldensity.

Solution:Unitimpulsefunctionisusuallycalleddfunctiond(t).Itsdefinitionis

Thefrequencyspectraldensityof(t):13DifferencebetweenfrequencyspectraldensityS(f)ofenergysignalandfrequencyspectrumofperiodicpowersignal:S(f)-continuousspectrum;C(jn0)-discreteUnitofS(f):V/Hz;UnitofC(jn0):

【Example2.6】Findthefrequencyspectraldensityofacosinusoidalwave(PowerSignal)withinfinitelength.Solution:Lettheexpressionofacosinusoidalwavebef(t)=cos0t,F()canbewrittenasIntroducingd(t)cangeneralizetheconceptoffrequencyspectraldensitytopowersignals.t0-00(a)波形(a)波形-000EnergyspectraldensityLettheenergyofanenergysignals(t)beE,thentheenergyofthesignalisdecidedbyIfitsfrequencyspectraldensityisS(f),thenfromParseval’stheoremwehavewhere|S(f)|2iscalledenergyspectraldensity.Theaboveequationcanberewrittenas:whereG(f)=|S(f)|2(J/Hz)isenergyspectraldensity.PropertyofG(f):Sinces(t)isarealfunction,|S(f)|2isanevenfunction,∴ PowerspectraldensityLetthetruncatedsignalofs(t)issT(t),-T/2<t<T/2,thenTodefinethepowerspectraldensityofthesignalas:

obtainthesignalpower:CharacteristicsofDeterministicSignalintimedomainAutocorrelationfunctionDefinitionoftheautocorrelationfunctionforenergysignal:Definitionoftheautocorrelationfunctionforpowersignal:Characteristics:R()isonlydependenton,butindependentoft.When=0,R()ofenergysignalequalstheenergyofthesignal,andR()ofpowersignalequalstheaveragepowerofthesignalCross-correlationfunctionDefinitionofthecross-correlationfunctionforenergysignal:Definitionofthecross-correlationfunctionforpowersignal:Characteristics:1.R12()isdependenton,andindependentoft.2. Proof:Letx=t+,thenProbability:LetAbeaneventinasamplespaceSTheprobabilityP(A)isarealnumberthatmeasuresthelikelihoodoftheeventAAxiomsofProbability

RandomVariables(r.v.)Forexample,thenumberofcallsreceivedwithinagivenperiodoftimeatthetelephoneexchangeisarandomvariable.Distributionfunctionofrandomvariable(orcumulativedistributionprobability/CDF):Definition:FX(x)=P(X

x)Characteristics:∵P(a<X

b)+P(X

a)=P(X

b),

P(a<X

b)=P(X

b)–P(X

a),

P(a<X

b)=FX(b)–FX(a) 27Distributionfunctionofdiscreterandomvariable:LetthevaluesofXbe:x1

x2…xixn,theirprobabilitiesarerespectivelyp1,p2,…,pi,…,pn,then

P(X<x1)=0, P(Xxn)=1

∵P(Xxi)=P(X=x1)+P(X=x2)+…+P(X=xi),

Characteristics:

FX(-)=0

FX(+)=1

Ifx1<x2,then

FX(x1)FX(x2)28Distributionfunctionofcontinuousrandomvariable:Whenxiscontinuous,fromthedefinitionofdistributionfunction

FX(x)=P(X

x)

weknowthatFX(x)isacontinuousmonotonicincreasingfunction.29Probabilitydensityofrandomvariable(pdf)ProbabilitydensityofcontinuousrandomvariablepX(x)DefinitionofpX(x):MeaningofpX(x):pX(x)isthederivativeofFX(x),andistheslopeofthecurveofFX(x)P(a<X

b)canbefoundfrompX(x):CharacteristicsofpX(x):

pX(x)031Probabilitydensityofdiscreterandomvariable

Distributionfunctionofdiscreterandomvariablecanbewrittenas:wherepi

-probabilityofx=xi

u(x)

-unitstepfunction Findingthederivativesofthetwosidesoftheaboveequation,weobtainitsprobabilitydensity:

Characteristics: Whenx

xi,px(x)=0 Whenx=xi

,px(x)=JointDistribution34

ExamplesoffrequentlyusedrandomvariablesRandomvariablewithnormaldistribution(alsocalledGaussiandistribution)MostImportantDefinition:Probabilitydensitywhere>0,a=const.Probabilitydensitycurve:JointGaussianRandomVariablesTwo-VariateGaussianPDF37RandomvariablewithuniformdistributionDefinition:probabilitydensity

wherea,bareconstants.Probabilitydensitycurve:bax0pA(x)38RandomvariablewithRayleighdistributionpdfwherea>0,andisaconstant.Probabilitydensitycurve:RandomvariablewithBinarydistributionRandomvariablewithBinomialdistribution42NumericalcharacteristicsofrandomvariableMathematicalexpectationDefinition:forcontinuousrandomvariableCharacteristics:

IfXandYareindependentofeachother,andE(X)andE(Y)exist,then

43VarianceDefinition:

whereVariancecanberewrittenas:Proof:Fordiscretevariable:Forcontinuousvariable:Characteristics:D(C)=0D(X+C)=D(X),D(CX)=C2D(X)D(X+Y)=D(X)+D(Y)D(X1+X2+…+Xn)=D(X1)+D(X2)+…+D(Xn) 44

MomentDefinition:thek-thmomentofarandomvariableXisk-thoriginmomentisthemomentwhena=0:k-thcentralmomentisthemomentwhen:Characteristics:Thefirstoriginmomentisthemathematicalexpectation:Thesecondcentralmomentisthevariance:RandomProcessArandomprocessisthenaturalextensionofrandomvariableswhendealingwithsignalsAlsoreferredtoasstochasticprocessorrandomsignalVoicessignals,TVsignals,thermalnoisegeneratedbyaraidoreceiverareallexamplesofrandomsignals.46Basicconceptofrandomprocess

X(A,t)-ensembleconsistingofallpossible“realizations”ofaneventAX(Ai,t)-arealizationofeventA,itisadeterminedtimefunctionX(A,tk)-valueofthefunctionatthegiventimetkDenoteforshort:

X(A,t)

X(t)

X(Ai,t)Xi

(t)47Example:receivernoiseNumericalcharacteristicsofrandomprocess:Statisticalmean:Variance:Autocorrelationfunction:50

StationaryrandomprocessDefinitionofstationaryrandomprocess:(strict) Arandomprocesswhosestatisticalcharacteristicsisindependentofthetimeoriginiscalledastationaryrandomprocess.(or,strictstationaryrandomprocess)Definitionofgeneralizedstationaryrandomprocess:(weak)

Therandomprocesswhosemean,varianceandautocorrelationfunctionareindependentofthetimeoriginCharacteristicsofgeneralizedstationaryrandomprocess:

Astrictstationaryrandomprocessmustbeageneralizedstationaryrandomprocess;butageneralizedstationaryrandomprocessisnotalwaysastrictstationaryrandomprocess.51

ErgodicityCharacteristicofergodicity:timeaveragemaybereplacedbystatisticalmean.Forexample,StatisticalmeanofergodicprocessmX:AutocorrelationfunctionofergodicprocessRX():Ifarandomprocesshasergodicity,thenitmustbeastrictstationaryrandomprocess.However,astrictstationaryrandomprocessisnotalwaysergodic.52Ergodicityofstationarycommunicationsystem

Ifthesignalandthenoisearebothergodic,thenFirstoriginmomentmX

=E[X(t)]-D.C.componentofsignalSquareoffirstoriginmomentmX

2-powerofnormalizedD.C.componentofsignalSecondoriginmomentE[X2(t)]-normalizedaveragepowerofsignalSecondcentralmomentX2

-normalizedaveragepowerfoA.C.componentofsignalIfmX

=mX

2=0,thenX2=E[X2(t)];

53CharacteristicsofpowerspectraldensityReview:powerspectraldensityofdeterministicsignalSimilarly,powerspectraldensityofstationaryrandomprocessequals:Averagepower:54Relationshipbetweenautocorrelationfunction&powerspectraldensityforRandomProcess

PX(f)andR()areapairofFouriertransform.55

【Example2.7】Letabinarysignalbex(t)asshowninthefigure.Itsamplitudeis+aor–a;andthenumberkofitssignchangesintimeintervalTobeysPoissondistribution:where,isaveragenumberofsignchangesofamplitudeinunittime.FinditsautocorrelationfunctionR()andpowerspectraldensityP(f).+a-ax(t)tt0t-56

Solution:Itcanbeseenfromtheabovefigure,x(t)x(t-)hasonlytwopossiblevalues:a2or-a2.Hence,equation canbereducedto

R()=a2

[occurrenceprobabilityofa2]+(-a2)[occurrenceprobabilityof(-a2)] where,theoccurrenceprobabilitycanbecalculatedaccordingtoPoissondistributionP(k). Ifthenumberofsignchangesofx(t)iseveninsecond,then+a2occurs;ifthenumberofsignchangesofx(t)isoddinsecond,then-a2occurs。Therefore

UseinsteadofTinPoissondistribution,thenobtain57

whenthevalueofisnegative,theaboveequationshouldberewrittenas Combiningtheabovetwoequations,finallyobtain: TheP(f)canbeobtainedfromtheFouriertransformoftheR():

CurvesofP(f)andR():58

【Example2.9】Findtheautocorrelationfunctionandthepowerspectraldensityofwhitenoise.

Solution:WhitenoisehasuniformpowerspectraldensityPn(f):

Pn(f)=n0/2

where,n0:singlesidepowerspectraldensity(W/Hz)

Theautocorrelationfunctionofwhitenoisecanbeobtainedfromitspowerspectraldensity:

thesamplesofwhitenoiseatanytwoadjacentinstants(i.e.,

0)areuncorrelated. Averagepowerof whitenoise: Theaboveequationshowsthattheaveragepowerofwhitenoiseisinfinity.Pn(f)n0/20fRn()n0/2059Powerspectraldensity&autocorrelationfunctionofband-limitedwhitenoisePowerspectraldensityofband-limitedwhitenoise: Ifthebandwidthofawhitenoiseinlimitedintheinterval(-fH,fH),thenwehave

Pn(f)=n0/2, -fH

<f<fH =0, else itsautocorrelationfunctionis:Curves:

Whenband-limitedwhitenoiseissampledaccordingtothesamplingtheorem,eachsampleisanuncorrelatedrandomvariable.

60

GaussianprocessDefinitionOnedimensionalprobabilitydensityofGaussprocess:where,a=E[X(t)]---mean

2=E[X(t)

-a]2---variance

---standarddeviation∵Gaussprocessisastationaryprocess,henceitsprobabilitydensitypX(x,t1)isindependentoft1 i.e.,pX(x,t1)=pX(x)CurveofpX(x):Multi-dimensionalprobabilitydensityofGaussprocess:63NormaldistributionexpressedbyerrorfunctionwhichcouldbeadopteddirectlyinmatlabDefinitionoferrorfunction:DefinitionofComplementaryerrorfunction:

Expressionofnormaldistribution64頻率近似為fcNarrowbandrandomprocess

BasicconceptofnarrowbandrandomprocessWhatdoesitmeannarrowband? Assumethebandwidthofarandomprocessisf,thecentralfrequencyisfc.Iff<<fc,thentherandomprocessiscalledanarrowbandrandomprocess.WaveformandexpressionofnarrowbandrandomprocessWaveformandspectrum:65Expression

where,aX(t)-randomenvelopeofnarrowbandrandomprocess

X(t)

-randomphaseofnarrowbandrandomprocess

0

-angularfrequencyofsinusoidalwave

Theaboveequationcanberewrittenas: where,

-inphasecomponentofX(t)

-orthogonalcomponentofX(t)

66

CharacteristicsofnarrowbandrandomprocessStatisticalcharacteristicsofXc(t)andXs(t) IfX(t)isastationarynarrowbandGaussianprocesswithzeromean,then

Xc(t)andXs(t)arealsoGaussianprocesses.

Xc(t)andXs(t)haveidenticalvariance,andthevarianceisequaltothevarianceofX(t)Xc

andXsatthesameinstantareuncorrelatedandstatisticallyindependent.StatisticalcharacteristicsofaX(t)andX(t)ProbabilitydensityofaX(t):ProbabilitydensityofX(t):

67SinusoidalwaveplusnarrowbandGaussianprocessExpressionofsinusoidalwaveplusnoise:where,A

-deterministicamplitudeofsinusoidalwave

0

-angularfrequencyofsinusoidalwave

-randomphaseofsinusoidalwave

n(t)-narrowbandGaussiannoiseProbabilitydensityfunctionoftheenvelopeofr(t): where,

2

-varianceofn(t)

I0()-zero-ordermodifiedBesselfunctionpr(x)iscalledgeneralizedRayleighdistribution,orRiciandistribution. WhenA=0,pr(x)becomesRayleighprobabilitydensity68Conditionalprobabilitydensityofthephaseofr(t): where,

-phaseofr(t)includingthephaseofsinusoidalwaveandthephaseofnoise

pr(/)-conditionalprobabilitydensityofthephaseofr(t)undertheconditionofgiverProbabilitydensityofthephaseofr(t):When=0, where,69CurvesofRiciandistributionWhenA/=0, EnvelopeRayleigh distribution PhaseUniform distributionWhenA/is verylarge, Envelopenormal distribution Phaseimpulse functionrRayleighdistributionProbabilitydensityEnveloper(a)ProbabilitydensityoftheenvelopewithRiciandistribution(b)ProbabilitydensityofthephasewithRiciandistributionUniformphasePhaseProbabilitydensityFigure2.9.1Raciandistributioncurves702.10

Signaltransferthroughlinearsystems

2.10.1BasicconceptoflinearsystemsCharacteristicsofthelinearsystemsdiscussedhereHaveapairofinputandapairofoutputPassiveMemorylessTime-invariantCausalityLinear:satisfyingsuperpositionprinciple Ifwheninputisxi(t),outputisyi(t),thenwheninputis theoutputis where,a1anda2arebotharbitraryconstants.71SketchoflinearsystemLinearsystemOutputInputx(t)y(t)X(f)Y(f)h(t)H(f)Figure2.10.1Linearsystemsketcht(t)h(t)t00722.10.2DeterministicsignaltransferthroughlinearsystemsTimedomainanalysismethod Leth(t)-impulseresponseofthesystem

x(t)-inputsignalwaveform

y(t)-outputsignalwaveform thenwehave:Forphysicallyrealizablesystems:

73FrequencydomainanalysismethodAssumeinputisaenergysignal,let

x(t)-inputenergysignal H(f)-Fouriertransformofh(t)

X(f)-Fouriertransformofx(t)

y(t)-outputsignal thenthefrequencyspectraldensityY(f)oftheoutputsignaly(t)ofthesystemis:

y(t)canbefoundfromtheinverseFouriertransformofY(f):74Assume:theinputx(t)isaperiodicpowersignal,then

where, theoutputis:

Iftheinputx(t)isanonperiodicalpowersignal,thenitwillbeprocessedasarandomsignal.0=2/T0T0

-periodofthesignalf0=0/2---fundamentalfrequencyofsignal75【Example2.10】ThereisaRClow-passfilterasshowninFig.2.10.4.Finditsimpulseresponseandtheexpressionofitsoutputsignalwhentheinputisexponentiallyattenuated. Solution:Assumex(t)-inputenergysignal

y(t)-outputenergysignal X(f)-frequencyspectraldensityofx(t)

Y(f)-frequencyspectraldensityofy(t) thenthetransferfunctionofthecircuitis:

圖2.10.4RC濾波器RCx(t)y(t)76

Theimpulseresponseh(t)ofthefilter:

Therelationshipbetweentheoutputandtheinputofthefilter: Assumetheinputx(t)equals: thentheoutputofthefilteris:77Conditionsofdistortionlesstransmission Thereisadistortionlesslineartransmissionsystem,anditsinputisanen

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論