




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SignalandNoiseinCommunicationsSystemsIncommunicationsystems,thereceivedwaveformisusuallycategorizedintothedesiredpartcontainingtheinformationandtheextraneousorundesiredpart.Thedesiredpartiscalledthesignal,andtheundesiredpartiscallednoise.Noiseisoneofthemostcriticalandfundamentalconceptsaffectingcommunicationsystems.Theentiresubjectofcommunicationsystemisallaboutmethodstoovercomethedistortingorbadeffectsofnoise.Todoso,understandingrandomvariablesandrandomprocessesbecomesquiteessential.TypicalnoisesourceClassificationofSignalsWhatisSignal?Anyphysicalquantitythatvarieswithtime,spaceoranyotherindependentvariablesiscalledasignal.Itisthecarrierofmessage.Themeaningfuloreffectivecontentincludedinthemessageisinformation.
ClassificationofSignalsThereareseveralwaystocharacterizethesignals:Continuous-timesignalvs.discrete-timesignalContinuousvaluedsignalvs.discrete-valuedsignal
Continuous-timeandcontinuousvalued:analogsignal(speech)Discrete-timeanddiscretevalued:digitalsignal(CD)Discrete-timeandcontinuousvalued:sampledsignalContinuous-timeandDiscretevalued:quantizedsignal
DeterministicSignalsandRandomSignals
EnergySignalsandPowerSignals
Energy:E=s2(t)dt;
Power:Energysignalhasfiniteenergy,butitsaveragepowerequals0.Physicallyrealizablewaveformsareofenergy-typePowersignalhasfiniteaveragepower,longduration,soitsenergyequalsinfinity.
DeterministicSignal:Thevalueatanytimearedeterministicandpredictable.RandomSignal:Indeterministicandunpredictable.However,theyhavestatisticcharacteristics.CharacteristicsofDeterminationSignalinfrequencydomainFrequencyspectrumofpowersignal:lets(t)beaperiodicpowersignal,itsperiodisT0,thenwehave
where0=2/T0=2f0
∵C(jn0)isacomplexfunction,
∴C(jn0)=|Cn|ejnwhere|Cn|-amplitudeofthecomponentwithfrequencynf0
n
-phaseofthecomponentwithfrequencynf0Fourierseriesofsignals(t):
?
【Example2.1】Findthespectrumofaperiodicrectangularwave.
Solution:AssumetheperiodofaperiodicrectangularwaveisT,thewidthis,andtheamplitudeisV,then
Itsfrequencyspectrumis
FrequencyspectrumfigureFrequencyspectraldensityofenergysignals
Letanenergysignalbes(t),thenitsfrequencyspectraldensityis
TheinverseFouriertransformofS()istheoriginalsignal:【Example2.3】Findthefrequencyspectraldensityofarectangularpulse.Solution:LettheexpressionoftherectangularpulsebeThenitsfrequencyspectraldensityisitsFouriertransform:?Frequencyspectrumfigure【Example2.4】Findthewaveformandthefrequencyspectraldensityofasamplefunction.
Solution:Thedefinitionofthesamplefunctionis
thefrequencyspectraldensitySa(t)is:
Fromtheaboveequation,weseethatSa()isagatefunction.【Example2.5】Findtheunitimpulsefunctionanditsfrequencyspectraldensity.
Solution:Unitimpulsefunctionisusuallycalleddfunctiond(t).Itsdefinitionis
Thefrequencyspectraldensityof(t):13DifferencebetweenfrequencyspectraldensityS(f)ofenergysignalandfrequencyspectrumofperiodicpowersignal:S(f)-continuousspectrum;C(jn0)-discreteUnitofS(f):V/Hz;UnitofC(jn0):
【Example2.6】Findthefrequencyspectraldensityofacosinusoidalwave(PowerSignal)withinfinitelength.Solution:Lettheexpressionofacosinusoidalwavebef(t)=cos0t,F()canbewrittenasIntroducingd(t)cangeneralizetheconceptoffrequencyspectraldensitytopowersignals.t0-00(a)波形(a)波形-000EnergyspectraldensityLettheenergyofanenergysignals(t)beE,thentheenergyofthesignalisdecidedbyIfitsfrequencyspectraldensityisS(f),thenfromParseval’stheoremwehavewhere|S(f)|2iscalledenergyspectraldensity.Theaboveequationcanberewrittenas:whereG(f)=|S(f)|2(J/Hz)isenergyspectraldensity.PropertyofG(f):Sinces(t)isarealfunction,|S(f)|2isanevenfunction,∴ PowerspectraldensityLetthetruncatedsignalofs(t)issT(t),-T/2<t<T/2,thenTodefinethepowerspectraldensityofthesignalas:
obtainthesignalpower:CharacteristicsofDeterministicSignalintimedomainAutocorrelationfunctionDefinitionoftheautocorrelationfunctionforenergysignal:Definitionoftheautocorrelationfunctionforpowersignal:Characteristics:R()isonlydependenton,butindependentoft.When=0,R()ofenergysignalequalstheenergyofthesignal,andR()ofpowersignalequalstheaveragepowerofthesignalCross-correlationfunctionDefinitionofthecross-correlationfunctionforenergysignal:Definitionofthecross-correlationfunctionforpowersignal:Characteristics:1.R12()isdependenton,andindependentoft.2. Proof:Letx=t+,thenProbability:LetAbeaneventinasamplespaceSTheprobabilityP(A)isarealnumberthatmeasuresthelikelihoodoftheeventAAxiomsofProbability
RandomVariables(r.v.)Forexample,thenumberofcallsreceivedwithinagivenperiodoftimeatthetelephoneexchangeisarandomvariable.Distributionfunctionofrandomvariable(orcumulativedistributionprobability/CDF):Definition:FX(x)=P(X
x)Characteristics:∵P(a<X
b)+P(X
a)=P(X
b),
P(a<X
b)=P(X
b)–P(X
a),
∴
P(a<X
b)=FX(b)–FX(a) 27Distributionfunctionofdiscreterandomvariable:LetthevaluesofXbe:x1
x2…xixn,theirprobabilitiesarerespectivelyp1,p2,…,pi,…,pn,then
P(X<x1)=0, P(Xxn)=1
∵P(Xxi)=P(X=x1)+P(X=x2)+…+P(X=xi),
∴
Characteristics:
FX(-)=0
FX(+)=1
Ifx1<x2,then
FX(x1)FX(x2)28Distributionfunctionofcontinuousrandomvariable:Whenxiscontinuous,fromthedefinitionofdistributionfunction
FX(x)=P(X
x)
weknowthatFX(x)isacontinuousmonotonicincreasingfunction.29Probabilitydensityofrandomvariable(pdf)ProbabilitydensityofcontinuousrandomvariablepX(x)DefinitionofpX(x):MeaningofpX(x):pX(x)isthederivativeofFX(x),andistheslopeofthecurveofFX(x)P(a<X
b)canbefoundfrompX(x):CharacteristicsofpX(x):
pX(x)031Probabilitydensityofdiscreterandomvariable
Distributionfunctionofdiscreterandomvariablecanbewrittenas:wherepi
-probabilityofx=xi
u(x)
-unitstepfunction Findingthederivativesofthetwosidesoftheaboveequation,weobtainitsprobabilitydensity:
Characteristics: Whenx
xi,px(x)=0 Whenx=xi
,px(x)=JointDistribution34
ExamplesoffrequentlyusedrandomvariablesRandomvariablewithnormaldistribution(alsocalledGaussiandistribution)MostImportantDefinition:Probabilitydensitywhere>0,a=const.Probabilitydensitycurve:JointGaussianRandomVariablesTwo-VariateGaussianPDF37RandomvariablewithuniformdistributionDefinition:probabilitydensity
wherea,bareconstants.Probabilitydensitycurve:bax0pA(x)38RandomvariablewithRayleighdistributionpdfwherea>0,andisaconstant.Probabilitydensitycurve:RandomvariablewithBinarydistributionRandomvariablewithBinomialdistribution42NumericalcharacteristicsofrandomvariableMathematicalexpectationDefinition:forcontinuousrandomvariableCharacteristics:
IfXandYareindependentofeachother,andE(X)andE(Y)exist,then
43VarianceDefinition:
whereVariancecanberewrittenas:Proof:Fordiscretevariable:Forcontinuousvariable:Characteristics:D(C)=0D(X+C)=D(X),D(CX)=C2D(X)D(X+Y)=D(X)+D(Y)D(X1+X2+…+Xn)=D(X1)+D(X2)+…+D(Xn) 44
MomentDefinition:thek-thmomentofarandomvariableXisk-thoriginmomentisthemomentwhena=0:k-thcentralmomentisthemomentwhen:Characteristics:Thefirstoriginmomentisthemathematicalexpectation:Thesecondcentralmomentisthevariance:RandomProcessArandomprocessisthenaturalextensionofrandomvariableswhendealingwithsignalsAlsoreferredtoasstochasticprocessorrandomsignalVoicessignals,TVsignals,thermalnoisegeneratedbyaraidoreceiverareallexamplesofrandomsignals.46Basicconceptofrandomprocess
X(A,t)-ensembleconsistingofallpossible“realizations”ofaneventAX(Ai,t)-arealizationofeventA,itisadeterminedtimefunctionX(A,tk)-valueofthefunctionatthegiventimetkDenoteforshort:
X(A,t)
X(t)
X(Ai,t)Xi
(t)47Example:receivernoiseNumericalcharacteristicsofrandomprocess:Statisticalmean:Variance:Autocorrelationfunction:50
StationaryrandomprocessDefinitionofstationaryrandomprocess:(strict) Arandomprocesswhosestatisticalcharacteristicsisindependentofthetimeoriginiscalledastationaryrandomprocess.(or,strictstationaryrandomprocess)Definitionofgeneralizedstationaryrandomprocess:(weak)
Therandomprocesswhosemean,varianceandautocorrelationfunctionareindependentofthetimeoriginCharacteristicsofgeneralizedstationaryrandomprocess:
Astrictstationaryrandomprocessmustbeageneralizedstationaryrandomprocess;butageneralizedstationaryrandomprocessisnotalwaysastrictstationaryrandomprocess.51
ErgodicityCharacteristicofergodicity:timeaveragemaybereplacedbystatisticalmean.Forexample,StatisticalmeanofergodicprocessmX:AutocorrelationfunctionofergodicprocessRX():Ifarandomprocesshasergodicity,thenitmustbeastrictstationaryrandomprocess.However,astrictstationaryrandomprocessisnotalwaysergodic.52Ergodicityofstationarycommunicationsystem
Ifthesignalandthenoisearebothergodic,thenFirstoriginmomentmX
=E[X(t)]-D.C.componentofsignalSquareoffirstoriginmomentmX
2-powerofnormalizedD.C.componentofsignalSecondoriginmomentE[X2(t)]-normalizedaveragepowerofsignalSecondcentralmomentX2
-normalizedaveragepowerfoA.C.componentofsignalIfmX
=mX
2=0,thenX2=E[X2(t)];
53CharacteristicsofpowerspectraldensityReview:powerspectraldensityofdeterministicsignalSimilarly,powerspectraldensityofstationaryrandomprocessequals:Averagepower:54Relationshipbetweenautocorrelationfunction&powerspectraldensityforRandomProcess
PX(f)andR()areapairofFouriertransform.55
【Example2.7】Letabinarysignalbex(t)asshowninthefigure.Itsamplitudeis+aor–a;andthenumberkofitssignchangesintimeintervalTobeysPoissondistribution:where,isaveragenumberofsignchangesofamplitudeinunittime.FinditsautocorrelationfunctionR()andpowerspectraldensityP(f).+a-ax(t)tt0t-56
Solution:Itcanbeseenfromtheabovefigure,x(t)x(t-)hasonlytwopossiblevalues:a2or-a2.Hence,equation canbereducedto
R()=a2
[occurrenceprobabilityofa2]+(-a2)[occurrenceprobabilityof(-a2)] where,theoccurrenceprobabilitycanbecalculatedaccordingtoPoissondistributionP(k). Ifthenumberofsignchangesofx(t)iseveninsecond,then+a2occurs;ifthenumberofsignchangesofx(t)isoddinsecond,then-a2occurs。Therefore
UseinsteadofTinPoissondistribution,thenobtain57
whenthevalueofisnegative,theaboveequationshouldberewrittenas Combiningtheabovetwoequations,finallyobtain: TheP(f)canbeobtainedfromtheFouriertransformoftheR():
CurvesofP(f)andR():58
【Example2.9】Findtheautocorrelationfunctionandthepowerspectraldensityofwhitenoise.
Solution:WhitenoisehasuniformpowerspectraldensityPn(f):
Pn(f)=n0/2
where,n0:singlesidepowerspectraldensity(W/Hz)
Theautocorrelationfunctionofwhitenoisecanbeobtainedfromitspowerspectraldensity:
thesamplesofwhitenoiseatanytwoadjacentinstants(i.e.,
0)areuncorrelated. Averagepowerof whitenoise: Theaboveequationshowsthattheaveragepowerofwhitenoiseisinfinity.Pn(f)n0/20fRn()n0/2059Powerspectraldensity&autocorrelationfunctionofband-limitedwhitenoisePowerspectraldensityofband-limitedwhitenoise: Ifthebandwidthofawhitenoiseinlimitedintheinterval(-fH,fH),thenwehave
Pn(f)=n0/2, -fH
<f<fH =0, else itsautocorrelationfunctionis:Curves:
Whenband-limitedwhitenoiseissampledaccordingtothesamplingtheorem,eachsampleisanuncorrelatedrandomvariable.
60
GaussianprocessDefinitionOnedimensionalprobabilitydensityofGaussprocess:where,a=E[X(t)]---mean
2=E[X(t)
-a]2---variance
---standarddeviation∵Gaussprocessisastationaryprocess,henceitsprobabilitydensitypX(x,t1)isindependentoft1 i.e.,pX(x,t1)=pX(x)CurveofpX(x):Multi-dimensionalprobabilitydensityofGaussprocess:63NormaldistributionexpressedbyerrorfunctionwhichcouldbeadopteddirectlyinmatlabDefinitionoferrorfunction:DefinitionofComplementaryerrorfunction:
Expressionofnormaldistribution64頻率近似為fcNarrowbandrandomprocess
BasicconceptofnarrowbandrandomprocessWhatdoesitmeannarrowband? Assumethebandwidthofarandomprocessisf,thecentralfrequencyisfc.Iff<<fc,thentherandomprocessiscalledanarrowbandrandomprocess.WaveformandexpressionofnarrowbandrandomprocessWaveformandspectrum:65Expression
where,aX(t)-randomenvelopeofnarrowbandrandomprocess
X(t)
-randomphaseofnarrowbandrandomprocess
0
-angularfrequencyofsinusoidalwave
Theaboveequationcanberewrittenas: where,
-inphasecomponentofX(t)
-orthogonalcomponentofX(t)
66
CharacteristicsofnarrowbandrandomprocessStatisticalcharacteristicsofXc(t)andXs(t) IfX(t)isastationarynarrowbandGaussianprocesswithzeromean,then
Xc(t)andXs(t)arealsoGaussianprocesses.
Xc(t)andXs(t)haveidenticalvariance,andthevarianceisequaltothevarianceofX(t)Xc
andXsatthesameinstantareuncorrelatedandstatisticallyindependent.StatisticalcharacteristicsofaX(t)andX(t)ProbabilitydensityofaX(t):ProbabilitydensityofX(t):
67SinusoidalwaveplusnarrowbandGaussianprocessExpressionofsinusoidalwaveplusnoise:where,A
-deterministicamplitudeofsinusoidalwave
0
-angularfrequencyofsinusoidalwave
-randomphaseofsinusoidalwave
n(t)-narrowbandGaussiannoiseProbabilitydensityfunctionoftheenvelopeofr(t): where,
2
-varianceofn(t)
I0()-zero-ordermodifiedBesselfunctionpr(x)iscalledgeneralizedRayleighdistribution,orRiciandistribution. WhenA=0,pr(x)becomesRayleighprobabilitydensity68Conditionalprobabilitydensityofthephaseofr(t): where,
-phaseofr(t)includingthephaseofsinusoidalwaveandthephaseofnoise
pr(/)-conditionalprobabilitydensityofthephaseofr(t)undertheconditionofgiverProbabilitydensityofthephaseofr(t):When=0, where,69CurvesofRiciandistributionWhenA/=0, EnvelopeRayleigh distribution PhaseUniform distributionWhenA/is verylarge, Envelopenormal distribution Phaseimpulse functionrRayleighdistributionProbabilitydensityEnveloper(a)ProbabilitydensityoftheenvelopewithRiciandistribution(b)ProbabilitydensityofthephasewithRiciandistributionUniformphasePhaseProbabilitydensityFigure2.9.1Raciandistributioncurves702.10
Signaltransferthroughlinearsystems
2.10.1BasicconceptoflinearsystemsCharacteristicsofthelinearsystemsdiscussedhereHaveapairofinputandapairofoutputPassiveMemorylessTime-invariantCausalityLinear:satisfyingsuperpositionprinciple Ifwheninputisxi(t),outputisyi(t),thenwheninputis theoutputis where,a1anda2arebotharbitraryconstants.71SketchoflinearsystemLinearsystemOutputInputx(t)y(t)X(f)Y(f)h(t)H(f)Figure2.10.1Linearsystemsketcht(t)h(t)t00722.10.2DeterministicsignaltransferthroughlinearsystemsTimedomainanalysismethod Leth(t)-impulseresponseofthesystem
x(t)-inputsignalwaveform
y(t)-outputsignalwaveform thenwehave:Forphysicallyrealizablesystems:
73FrequencydomainanalysismethodAssumeinputisaenergysignal,let
x(t)-inputenergysignal H(f)-Fouriertransformofh(t)
X(f)-Fouriertransformofx(t)
y(t)-outputsignal thenthefrequencyspectraldensityY(f)oftheoutputsignaly(t)ofthesystemis:
y(t)canbefoundfromtheinverseFouriertransformofY(f):74Assume:theinputx(t)isaperiodicpowersignal,then
where, theoutputis:
Iftheinputx(t)isanonperiodicalpowersignal,thenitwillbeprocessedasarandomsignal.0=2/T0T0
-periodofthesignalf0=0/2---fundamentalfrequencyofsignal75【Example2.10】ThereisaRClow-passfilterasshowninFig.2.10.4.Finditsimpulseresponseandtheexpressionofitsoutputsignalwhentheinputisexponentiallyattenuated. Solution:Assumex(t)-inputenergysignal
y(t)-outputenergysignal X(f)-frequencyspectraldensityofx(t)
Y(f)-frequencyspectraldensityofy(t) thenthetransferfunctionofthecircuitis:
圖2.10.4RC濾波器RCx(t)y(t)76
Theimpulseresponseh(t)ofthefilter:
Therelationshipbetweentheoutputandtheinputofthefilter: Assumetheinputx(t)equals: thentheoutputofthefilteris:77Conditionsofdistortionlesstransmission Thereisadistortionlesslineartransmissionsystem,anditsinputisanen
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電器具生產(chǎn)過(guò)程中的能源管理考核試卷
- 稀土金屬冶煉與冶煉設(shè)備出口策略考核試卷
- 設(shè)備噪聲控制與振動(dòng)分析考核試卷
- 如何設(shè)計(jì)整個(gè)系統(tǒng)架構(gòu)
- 環(huán)保職業(yè)衛(wèi)生課件
- 企業(yè)資產(chǎn)管理軟件操作教程課件
- 醫(yī)院病案管理模板
- 2019-2025年標(biāo)準(zhǔn)員之專業(yè)管理實(shí)務(wù)提升訓(xùn)練試卷B卷附答案
- 2025年特種裝備電纜合作協(xié)議書(shū)
- 2025年年快手短視頻合作協(xié)議書(shū)
- 慢阻肺的管理課件
- 電工基本知識(shí)培訓(xùn)資料課件
- 北師大版《相遇問(wèn)題》公開(kāi)課課件
- QC-R 596-2017高速鐵路板式無(wú)砟軌道自密實(shí)混凝土高清-無(wú)水印
- 鄰補(bǔ)角、對(duì)頂角、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角經(jīng)典習(xí)題-一對(duì)一專用
- HP系列培訓(xùn)手冊(cè)
- 畢業(yè)論文-原油電脫水方法與機(jī)理的研究
- 陜西省2022年普通高中學(xué)業(yè)水平考試(真題)
- 事故池管理的有關(guān)規(guī)定
- 2021-2022學(xué)年甘肅省天水市第一中學(xué)高一下學(xué)期第二階段考物理試題(原卷版)
- 混凝土結(jié)構(gòu)課程設(shè)計(jì)244
評(píng)論
0/150
提交評(píng)論