




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ComputerScience&TechnologySchoolofShandongUniversityInstructor:HouMengbo
Email:houmbATOffice:InformationSecurityResearchGroupGuidetoInformationSecurityChapter9–PublicKeyCryptographyandRSAPrivate-KeyCryptographytraditionalprivate/secret/singlekeycryptographyusesonekeysharedbybothsenderandreceiverifthiskeyisdisclosedcommunicationsarecompromisedalsoissymmetric,partiesareequalhencedoesnotprotectsenderfromreceiverforgingamessage&claimingissentbysenderBasedonsubstitutionandpermutationPublic-KeyCryptographyprobablymostsignificantadvanceinthe3000yearhistoryofcryptographyusestwokeys–apublic&aprivatekeyasymmetricsincepartiesarenotequalusescleverapplicationofnumbertheoreticconceptstofunctioncomplementsratherthanreplacesprivatekeycryptoBasedonhardproblemsinmathematicsAretheseopinionsright?Publickeycryptoissaferthanprivatekeycrypto(X)Publickeycryptowillreplaceprivatekeycrypto(X)Keydistributionofprivatekeycryptoismorecomplicatedthanthatofpublickey(X)Public-KeyCryptographypublic-key/two-key/asymmetriccryptographyinvolvestheuseoftwokeys:apublic-key,whichmaybeknownbyanybody,andcanbeusedtoencryptmessages,andverifysignatures
aprivate-key,knownonlytotherecipient,usedtodecryptmessages,andsign(create)signaturesisasymmetricbecausethosewhoencryptmessagesorverifysignaturescannotdecryptmessagesorcreatesignaturesWhyPublic-KeyCryptography?developedtoaddresstwokeyissues:keydistribution–howtohavesecurecommunicationsingeneralwithouthavingtotrustaKDCwithyourkeydigitalsignatures–howtoverifyamessagecomesintactfromtheclaimedsenderpublicinventionduetoWhitfieldDiffie&MartinHellmanatStanfordUniin1976knownearlierinclassifiedcommunityPublic-KeyCharacteristicsPublic-Keyalgorithmsrelyontwokeyswiththecharacteristicsthatitis:computationallyinfeasibletofinddecryptionkeyknowingonlyalgorithm&encryptionkeycomputationallyeasytoen/decryptmessageswhentherelevant(en/decrypt)keyisknowneitherofthetworelatedkeyscanbeusedforencryption,withtheotherusedfordecryption(insomeschemes)Public-KeyCrypto:EncryptionPublic-KeyCrypto:AuthenticationPublickeycrypto
vsprivatekeycryptoPublic-KeyCryptosystem:SecrecyPublic-KeyCryptosys:AuthenticationPublic-KeyCryptosystems:Secrecy&AuthenticationPublic-KeyApplicationscanclassifyusesinto3categories:encryption/decryption(providesecrecy)digitalsignatures(provideauthentication)keyexchange(ofsessionkeys)somealgorithmsaresuitableforalluses,othersarespecifictooneExamplesRequestsforpublickeycryptographyPublicKeypairsgenerationiseasy.Encryptioniscomputationallyeasy(knowplaintextMandKU).Decryptioniscomputationallyeasy(knowciphertextCandKR).computationallyinfeasibletofindKRfromKR.computationallyinfeasibletofindplaintextfromKUandciphertext.SequenceofencryptionanddecryptioniscommutativeTheinbeingofpublickeycryptoOne-wayfunctiony=f(x)easy,whilex=f-1(y)difficult.One-waytrapdoorfunctionknowkandx,y=fk(x)easyknowkandy,x=fk-1(y)easyknowy,butnotk,x=fk-1(y)difficultOne-waytrapdoorfunctionisthekeytodesignpublickeycryptography.SecurityofPublicKeySchemeslikeprivatekeyschemesbruteforceexhaustivesearchattackisalwaystheoreticallypossiblebutkeysusedaretoolarge(>512bits)securityreliesonalargeenoughdifferenceindifficultybetweeneasy(en/decrypt)andhard(cryptanalyse)problemsmoregenerallythehardproblemisknown,itsjustmadetoohardtodoinpractiserequirestheuseofverylargenumbershenceisslowcomparedtoprivatekeyschemes
RSAbyRivest,Shamir&AdlemanofMITin1977bestknown&widelyusedpublic-keyschemebasedonexponentiationinafinite(Galois)fieldoverintegersmoduloaprimeuseslargeintegers(eg.1024bits)securityduetocostoffactoringlargenumbersnb.factorizationtakesO(elognloglogn)operations(hard)RSAKeySetupeachusergeneratesapublic/privatekeypairby:selectingtwolargeprimesatrandom-p,q
computingtheirsystemmodulusN=p.qnote?(N)=(p-1)(q-1)
selectingatrandomtheencryptionkeyewhere1<e<?(N),gcd(e,?(N))=1solvefollowingequationtofinddecryptionkeyd
e.d=1mod?(N)and0≤d≤N
publishtheirpublicencryptionkey:KU={e,N}keepsecretprivatedecryptionkey:KR={d,N}RSAUsetoencryptamessageMthesender:obtainspublickeyofrecipientKU={e,N}
computes:C=MemodN,where0≤M<NtodecrypttheciphertextCtheowner:usestheirprivatekeyKR={d,N}
computes:M=CdmodN
notethatthemessageMmustbesmallerthanthemodulusN(blockifneeded)WhyRSAWorksbecauseofEuler'sTheorem:a?(n)=1modNwheregcd(a,N)=1inRSAhave:N=p.q?(N)=(p-1)(q-1)
carefullychosene&dtobeinversesmod?(N)
hencee.d=1+k.?(N)forsomekhence:
Cd=(Me)d=M1+k.?(N)=M1.(M?(N))k=M1.(1)k=M1=MmodN=MRSAExampleSelectprimes:p=17&q=11Compute
n=pq=17×11=187Compute?(n)=(p–1)(q-1)=16×10=160Selecte:gcd(e,160)=1;choosee=7Determined:de=1mod160andd<160Valueisd=23since23×7=161=10×160+1PublishpublickeyKU={7,187}KeepsecretprivatekeyKR={23,17,11}RSAExamplecontsampleRSAencryption/decryptionis:givenmessageM=88(nb.88<187)encryption:C=887mod187=11
decryption:M=1123mod187=88
ExponentiationcanusetheSquareandMultiplyAlgorithmafast,efficientalgorithmforexponentiationconceptisbasedonrepeatedlysquaringbaseandmultiplyingintheonesthatareneededtocomputetheresultlookatbinaryrepresentationofexponentonlytakesO(log2n)multiplesfornumberneg.75=74.71=3.7=10mod11eg.3129=3128.31=5.3=4mod11ExponentiationAlgorithmRSAKeyGenerationusersofRSAmust:determinetwoprimesatrandom-p,q
selecteithereordandcomputetheotherprimesp,q
mustnotbeeasilyderivedfrommodulusN=p.qmeansmustbesufficientlylargetypicallyguessanduseprobabilistictestexponentse,dareinverses,souseInversealgorithmtocomputetheotherHowtochooseprimenumber1.Chooserandomoddnumberp.2.
Chooserandomintegera,a<p3.
ExecuteMiller-RabinAlgorithmfortest,ifpnopass,thengobackstep1.4.Ifexecutemanytimes(formanya),ppassthetest,thenacceptp,elserejectp,andgobacktostep1.ConsiderationsThereisoneNisprimenumberforevery(ln(N)).Excepttheevennumberandthenumberthatcandevide5,soweshouldtestfor0.4*ln(n)numbersatmost.suchas:forprimenumberasbigas2200,,wetry60times.For(e,(n))=1,tochooseeisnotverydifficut,becausetheprobabilityofrelativelyprimefor2randomnumbersisnearly0.6RSASecuritythreeapproachestoattackingRSA:bruteforcekeysearch(infeasiblegivensizeofnumbers)mathematicalattacks(basedondifficultyofcomputing?(N),byfactoringmodulusN)timingattacks(onrunningofdecryption)FactoringProblemmathematicalapproachtakes3forms:factorN=p.q,hencefind?(N)andthenddetermine?(N)direct
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- NB/T 11634-2024煤礦用局部通風(fēng)機(jī)低噪聲結(jié)構(gòu)設(shè)計(jì)與噪聲限定要求
- 2025年職業(yè)培訓(xùn)師考試試題及答案
- 2025年中小學(xué)教師職稱考試試題及答案
- 2025年信息與計(jì)算科學(xué)專業(yè)考試試題及答案
- 四道題性格測(cè)試題及答案
- 西方政治制度下的教育政策影響試題及答案
- 網(wǎng)絡(luò)流量識(shí)別技巧試題及答案
- 機(jī)電工程新興市場(chǎng)分析試題及答案
- 西方政治制度中的法治精神與實(shí)踐探討試題及答案
- 影響立法過程的關(guān)鍵因素試題及答案
- 美國(guó)知識(shí)產(chǎn)權(quán)法
- 中國(guó)骨質(zhì)疏松診治指南新
- 品質(zhì)的管理制度
- 養(yǎng)老院安全工作小組及其職責(zé)與規(guī)范
- 烹飪?cè)现R(shí)試題庫(附答案)
- 乳腺癌患者化療個(gè)案護(hù)理
- 中國(guó)科學(xué)院大學(xué)《模式識(shí)別與機(jī)器學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷
- 外研版一起點(diǎn)四年級(jí)下冊(cè)單詞默寫表
- 【MOOC】油氣田應(yīng)用化學(xué)-西南石油大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 醫(yī)護(hù)人員出國(guó)(境)與參加學(xué)術(shù)會(huì)議管理制度
- 慢病隨訪管理
評(píng)論
0/150
提交評(píng)論