




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
指數(shù)函數(shù)練習題(包含詳細標準答案)指數(shù)函數(shù)練習題(包含詳細標準答案)指數(shù)函數(shù)練習題(包含詳細標準答案)資料僅供參考文件編號:2022年4月指數(shù)函數(shù)練習題(包含詳細標準答案)版本號:A修改號:1頁次:1.0審核:批準:發(fā)布日期:1.給出下列結(jié)論:②eq\r(n,an)=|a|(n>1,n∈N*,n為偶數(shù));④若2x=16,3y=eq\f(1,27),則x+y=7.其中正確的是()A.①② B.②③C.③④ D.②④答案B解讀∵2x=16,∴x=4,∵3y=eq\f(1,27),∴y=-3.∴x+y=4+(-3)=1,故④錯.2.函數(shù)y=eq\r(16-4x)的值域是()A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)答案C3.函數(shù)f(x)=3-x-1的定義域、值域是()A.定義域是R,值域是RB.定義域是R,值域是(0,+∞)C.定義域是R,值域是(-1,+∞)D.以上都不對答案C解讀f(x)=(eq\f(1,3))x-1,∵(eq\f(1,3))x>0,∴f(x)>-1.4.設(shè)y1=,y2=,y3=(eq\f(1,2))-,則()A.y3>y1>y2 B.y2>y1>y3C.y1>y2>y3 D.y1>y3>y2答案D解讀y1=,y2=,y3=,∵y=2x在定義域內(nèi)為增函數(shù),∴y1>y3>y2.5.函數(shù)f(x)=ax-b的圖像如圖,其中a,b為常數(shù),則下列結(jié)論正確的是()A.a(chǎn)>1,b<0 B.a(chǎn)>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案D6.(2014·成都二診)若函數(shù)f(x)=(a+eq\f(1,ex-1))cosx是奇函數(shù),則常數(shù)a的值等于()A.-1 B.1C.-eq\f(1,2)\f(1,2)答案D7.(2014·山東師大附中)集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B只有一個子集,則實數(shù)a的取值范圍是()A.(-∞,1) B.(-∞,1]C.(1,+∞) D.R答案B8.函數(shù)f(x)=3·4x-2x在x∈[0,+∞)上的最小值是()A.-eq\f(1,12) B.0C.2 D.10答案C解讀設(shè)t=2x,∵x∈[0,+∞),∴t≥1.∵y=3t2-t(t≥1)的最小值為2,∴函數(shù)f(x)的最小值為2.9.已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(\r(x)-1,x>0,,2-|x|+1,x≤0.))若關(guān)于x的方程f(x)+2x-k=0有且只有兩個不同的實根,則實數(shù)k的取值范圍為()A.(-1,2] B.(-∞,1]∪(2,+∞)C.(0,1] D.[1,+∞)答案A解讀在同一坐標系中作出y=f(x)和y=-2x+k的圖像,數(shù)形結(jié)合即可.10.函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],當a變化時,函數(shù)b=g(a)的圖像可以是()答案B解讀函數(shù)y=2|x|的圖像如圖.當a=-4時,0≤b≤4;當b=4時,-4≤a≤0.11.若函數(shù)y=(a2-1)x在(-∞,+∞)上為減函數(shù),則實數(shù)a的取值范圍是________.答案(-eq\r(2),-1)∪(1,eq\r(2))解讀函數(shù)y=(a2-1)x在(-∞,+∞)上為減函數(shù),則0<a2-1<1,解得1<a<eq\r(2)或-eq\r(2)<a<-1.12.函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a=________.答案2解讀∵y=ax在[0,1]上為單調(diào)函數(shù),∴a0+a1=3,∴a=2.13.(2014·滄州七校聯(lián)考)若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=eq\f(1,9),則f(x)的單調(diào)遞減區(qū)間是________.答案[2,+∞)解讀f(1)=a2=eq\f(1,9),a=eq\f(1,3),f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,3)2x-4,x≥2,,\f(1,3)4-2x,x<2.))∴單調(diào)遞減區(qū)間為[2,+∞).14.若0<a<1,0<b<1,且,則x的取值范圍是________.答案(3,4)解讀logb(x-3)>0,∴0<x-3<1,∴3<x<4.15.若函數(shù)y=2-x+1+m的圖像不經(jīng)過第一象限,則m的取值范圍是______.答案m≤-216.是否存在實數(shù)a,使函數(shù)y=a2x+2ax-1(a>0且a≠1)在[-1,1]上的最大值是14答案a=3或a=eq\f(1,3)解讀令t=ax,則y=t2+2t-1.(1)當a>1時,∵x∈[-1,1],∴ax∈[eq\f(1,a),a],即t∈[eq\f(1,a),a].∴y=t2+2t-1=(t+1)2-2在[eq\f(1,a),a]上是增函數(shù)(對稱軸t=-1<eq\f(1,a)).∴當t=a時,ymax=(a+1)2-2=14.∴a=3或a=-5.∵a>1,∴a=3.(2)當0<a<1時,t∈[a,eq\f(1,a)].∵y=(t+1)2-2在[a,eq\f(1,a)]上是增函數(shù),∴ymax=(eq\f(1,a)+1)2-2=14.∴a=eq\f(1,3)或a=-eq\f(1,5).∵0<a<1,∴a=eq\f(1,3).綜上,a=3或a=eq\f(1,3).17.(2011·上海)已知函數(shù)f(x)=a·2x+b·3x,其中a,b滿足a·b≠0.(1)若a·b>0,判斷函數(shù)f(x)的單調(diào)性;(2)若a·b<0,求f(x+1)>f(x)時的x的取值范圍.答案(1)a>0,b>0時,f(x)增函數(shù);a<0,b<0時,f(x)減函數(shù)(2)a<0,b>0時,x>\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2b)));a>0,b<0時,x<\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2b)))解讀(1)當a>0,b>0時,任意x1,x2∈R,x1<x2,∴f(x1)-f(x2)<0,∴函數(shù)f(x)在R上是增函數(shù).當a<0,b<0時,同理,函數(shù)f(x)在R上是減函數(shù).(2)f(x+1)-f(x)=a·2x+2b·3x>0.當a<0,b>0時,eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))x>-eq\f(a,2b),則x>\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2b)));當a>0,b<0時,eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))x<-eq\f(a,2b),則x<\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2b))).18.已知函數(shù)f(x)=-eq\f(2x,2x+1).(1)用定義證明函數(shù)f(x)在(-∞,+∞)上為減函數(shù);(2)若x∈[1,2],求函數(shù)f(x)的值域;(3)若g(x)=eq\f(a,2)+f(x),且當x∈[1,2]時g(x)≥0恒成立,求實數(shù)a的取值范圍.答案(1)略(2)[-eq\f(4,5),-eq\f(2,3)](3)a≥eq\f(8,5)(2)∵f(x)在(-∞,+∞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字游戲編程試題及答案
- 護士外出培訓學習
- 蛋雞的飼養(yǎng)管理技術(shù)
- 破水護理查房
- 分級護理制度總結(jié)
- 2025年宿舍維修申報流程執(zhí)行細節(jié)全解析
- C++語言新特性更新試題及答案
- 高中英語書面表達專題訓練卷2025:語法糾錯與寫作規(guī)范指導(dǎo)
- 肺癌的治療和護理
- 高血壓疾病治療
- 漢字構(gòu)字的基本原理和識字教學模式分析
- 護理風險管理與護理安全
- RouterOS介紹
- 綜采工作面液壓支架壓死救活技術(shù)研究
- 十字軸鍛造成型工藝及模具設(shè)計畢業(yè)論文
- 主體結(jié)構(gòu)監(jiān)理實施細則范本
- NETWORKER+SQL Server備份實施文檔
- 控制性詳細規(guī)劃 - 寧波市規(guī)劃局
- 保潔員工考勤表
- JGJ8-2016建筑變形測量規(guī)范
- 《MSDS培訓資料》PPT課件.ppt
評論
0/150
提交評論