2023學(xué)年山東青島膠州市高考數(shù)學(xué)倒計時模擬卷(含解析)_第1頁
2023學(xué)年山東青島膠州市高考數(shù)學(xué)倒計時模擬卷(含解析)_第2頁
2023學(xué)年山東青島膠州市高考數(shù)學(xué)倒計時模擬卷(含解析)_第3頁
2023學(xué)年山東青島膠州市高考數(shù)學(xué)倒計時模擬卷(含解析)_第4頁
免費(fèi)預(yù)覽已結(jié)束,剩余16頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)2.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.3.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動點(diǎn),為軸上的動點(diǎn),則的最大值是()A. B.9 C.7 D.4.函數(shù)(),當(dāng)時,的值域為,則的范圍為()A. B. C. D.5.在正方體中,球同時與以為公共頂點(diǎn)的三個面相切,球同時與以為公共頂點(diǎn)的三個面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.6.運(yùn)行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20177.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.48.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.9.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.10.設(shè)集合,,則()A. B.C. D.11.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)12.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.14.在平面直角坐標(biāo)系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點(diǎn),則弦的長為_________15.設(shè),若函數(shù)有大于零的極值點(diǎn),則實數(shù)的取值范圍是_____16.如圖,在等腰三角形中,已知,,分別是邊上的點(diǎn),且,其中且,若線段的中點(diǎn)分別為,則的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.18.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對任意的,當(dāng)時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)19.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點(diǎn)個數(shù).20.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.21.(12分)已知某種細(xì)菌的適宜生長溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.22.(10分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】

根據(jù)并集的求法直接求出結(jié)果.【題目詳解】∵,∴,故選C.【答案點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.2、B【答案解析】

先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對應(yīng)的的取值范圍即可.【題目詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點(diǎn),但其導(dǎo)函數(shù)圖象(實線)與軸有三個交點(diǎn),不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個交點(diǎn),合乎題意.對函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【答案點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.3、B【答案解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.4、B【答案解析】

首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實數(shù)的不等式,解不等式即可求得范圍.【題目詳解】因為,所以,若值域為,所以只需,∴.故選:B【答案點(diǎn)睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).5、D【答案解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【題目詳解】根據(jù)拋物線的定義,點(diǎn)到點(diǎn)的距離與到直線的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點(diǎn)均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【答案點(diǎn)睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)6、D【答案解析】

依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.7、D【答案解析】

利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【題目詳解】因為,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【答案點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題8、B【答案解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.9、B【答案解析】

根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【題目詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【答案點(diǎn)睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.10、D【答案解析】

利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【題目詳解】由題意知,集合,,由集合的交運(yùn)算可得,.故選:D【答案點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.11、B【答案解析】

根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍。【題目詳解】根據(jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【答案點(diǎn)睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。12、D【答案解析】

畫出可行域,計算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【題目詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【答案點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、18【答案解析】

由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對稱,結(jié)合函數(shù)的對稱性進(jìn)行求解即可.【題目詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對稱,,函數(shù)關(guān)于點(diǎn)對稱,所以兩個函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對稱,.故答案為:18【答案點(diǎn)睛】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.14、【答案解析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【題目詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時,到直線的距離,不成立,當(dāng)時,與圓相交于,兩點(diǎn),到直線的距離,故答案為.【答案點(diǎn)睛】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題.15、【答案解析】

先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【題目詳解】因為,所以,令得,因為函數(shù)有大于0的極值點(diǎn),所以,即.【答案點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問題,極值點(diǎn)為導(dǎo)數(shù)的變號零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.16、【答案解析】

根據(jù)條件及向量數(shù)量積運(yùn)算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運(yùn)算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【題目詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運(yùn)算可知線段的中點(diǎn)分別為則由向量減法的線性運(yùn)算可得所以因為,代入化簡可得因為所以當(dāng)時,取得最小值因而故答案為:【答案點(diǎn)睛】本題考查了平面向量數(shù)量積的綜合應(yīng)用,向量的線性運(yùn)算及模的求法,二次函數(shù)最值的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3360元;(2)見解析【答案解析】

(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【題目詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機(jī)抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.【答案點(diǎn)睛】本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望計算問題,屬于中檔題.18、(1)(2)2【答案解析】

(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進(jìn)行分類討論.當(dāng)時,將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【題目詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時,顯然成立;當(dāng)時,不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點(diǎn).且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【答案點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.19、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數(shù)在有3個零點(diǎn).【答案解析】

(Ⅰ)求出導(dǎo)數(shù),寫出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【題目詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個零點(diǎn),,當(dāng)時,遞增;當(dāng)時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數(shù)在有3個零點(diǎn).【答案點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,考查零點(diǎn)存在性定理的應(yīng)用,關(guān)鍵是能夠通過導(dǎo)函數(shù)的單調(diào)性和零點(diǎn)存在定理確定導(dǎo)函數(shù)的零點(diǎn)個數(shù),進(jìn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論