2022屆福建省柘榮、寧德高中重點(diǎn)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2022屆福建省柘榮、寧德高中重點(diǎn)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2022屆福建省柘榮、寧德高中重點(diǎn)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2022屆福建省柘榮、寧德高中重點(diǎn)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2022屆福建省柘榮、寧德高中重點(diǎn)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1在正方體中,點(diǎn),分別為棱,的中點(diǎn),給出下列命題:;平面;和成角為.正確命題的個(gè)數(shù)是( )A0B1C2D32已知a,b是兩條不同的直線,是兩個(gè)不同的平面,且a,b,a,b,則“ab“是“

2、”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件3若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為( )A85B84C57D564劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為( )ABCD5設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存

3、在點(diǎn),使,且,則雙曲線的離心率為( )AB2CD6已知,為兩條不同直線,為三個(gè)不同平面,下列命題:若,則;若,則;若,則;若,則.其中正確命題序號為( )ABCD7已知數(shù)列的前n項(xiàng)和為,且對于任意,滿足,則( )ABCD8執(zhí)行程序框圖,則輸出的數(shù)值為( )ABCD9已知圓與拋物線的準(zhǔn)線相切,則的值為()A1B2CD410已知盒中有3個(gè)紅球,3個(gè)黃球,3個(gè)白球,且每種顏色的三個(gè)球均按,編號,現(xiàn)從中摸出3個(gè)球(除顏色與編號外球沒有區(qū)別),則恰好不同時(shí)包含字母,的概率為( )ABCD11記其中表示不大于x的最大整數(shù),若方程在在有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍( )ABCD12數(shù)列an,滿足對任

4、意的nN+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列an的前100項(xiàng)的和S100=( )A132B299C68D99二、填空題:本題共4小題,每小題5分,共20分。13已知數(shù)列的前項(xiàng)滿足,則_.14已知,滿足約束條件,則的最小值為_15根據(jù)如圖的算法,輸出的結(jié)果是_.16函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列的前項(xiàng)和為,且滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,且數(shù)列前項(xiàng)和為,求的取值范圍18(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3

5、y290相切(1)求圓的方程;(2)設(shè)直線axy+50(a0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由19(12分)已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.20(12分)如圖,在直三棱柱中,點(diǎn)分別為和的中點(diǎn).()棱上是否存在點(diǎn)使得平面平面?若存在,寫出的長并證明你的結(jié)論;若不存在,請說明理由.()求二面角的余弦值.21(12分)如圖,在平面四邊形中,.(1)求;(2)求四邊形面積的最大值.22(10分)如圖,

6、平面四邊形中,是上的一點(diǎn),是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】建立空間直角坐標(biāo)系,利用向量的方法對四個(gè)命題逐一分析,由此得出正確命題的個(gè)數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,.,所以,故正確.,不存在實(shí)數(shù)使,故不成立,故錯(cuò)誤.,故平面不成立,故錯(cuò)誤.,設(shè)和成角為,則,由于,所以,故正確.綜上所述,正確的命題有個(gè).故選:C【點(diǎn)睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運(yùn)算

7、求解能力,屬于中檔題.2D【解析】根據(jù)面面平行的判定及性質(zhì)求解即可【詳解】解:a,b,a,b,由ab,不一定有,與可能相交;反之,由,可得ab或a與b異面,a,b是兩條不同的直線,是兩個(gè)不同的平面,且a,b,a,b,則“ab“是“”的既不充分也不必要條件故選:D.【點(diǎn)睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題3A【解析】先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.4A【解析】設(shè)圓的

8、半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.5A【解析】由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率【詳解】由題意,由雙曲線定義得,從而得,在中,由余弦定理得,化簡得故選:A【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦

9、定理得出的齊次式6C【解析】根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,則,故正確;若,平面可能相交,故錯(cuò)誤;若,則可能平行,故錯(cuò)誤;由線面垂直的性質(zhì)可得,正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.7D【解析】利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可【詳解】當(dāng)時(shí),所以數(shù)列從第2項(xiàng)起為等差數(shù)列,所以,故選:【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題8C【解析】由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算

10、并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,滿足條件,滿足條件,滿足條件,滿足條件,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.9B【解析】因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于 半徑,可知的值為2,選B.【詳解】請?jiān)诖溯斎朐斀猓?0B【解析】首先求出基本事件總數(shù),則事件“恰好不同時(shí)包含字母,”的對立事件為“取出的3個(gè)球的編號恰好為字母,”, 記事件“恰好不同時(shí)包含字母,”為,利用對立事件的概率公式計(jì)算可得;【詳解】解:從9個(gè)球中摸出3個(gè)球,則基本事件總數(shù)為(個(gè)),則事件“恰好不同時(shí)包含字

11、母,”的對立事件為“取出的3個(gè)球的編號恰好為字母,”記事件“恰好不同時(shí)包含字母,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識,解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題11D【解析】做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個(gè)交點(diǎn),而函數(shù)在上有3個(gè)交點(diǎn),則在上有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知 方程在上有3個(gè)不同的實(shí)數(shù)根,則在上有4個(gè)不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過時(shí),;當(dāng)直線經(jīng)過時(shí),可知當(dāng)時(shí),直線與的圖象在上有4個(gè)交點(diǎn),即方程,在上有4個(gè)不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個(gè)數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系

12、轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問題的基本思想,屬于中檔題.12B【解析】由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,故,是以3為周期的數(shù)列,故,.故選:.【點(diǎn)睛】本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法【詳解】,時(shí),得,又,()故答案為:【點(diǎn)睛】本題考查求數(shù)列通項(xiàng)公式,由已知條件類比已知求的解題方法求解142【解析】作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處

13、時(shí),取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.1555【解析】根據(jù)該For語句的功能,可得,可得結(jié)果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點(diǎn)睛】本題考查For語句的功能,屬基礎(chǔ)題.16【解析】根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可【詳解】解:由,得,則,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)由,可求,然后由時(shí),可得,根據(jù)等比數(shù)

14、列的通項(xiàng)可求(2)由,而,利用裂項(xiàng)相消法可求.【詳解】(1)當(dāng)時(shí),解得,當(dāng)時(shí),得,即,數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,;(2),.【點(diǎn)睛】本題考查遞推公式在數(shù)列的通項(xiàng)求解中的應(yīng)用,等比數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力18(2)(x2)2+y22(2)()(3)存在,【解析】(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線axy+50,代入圓的方程,計(jì)算4(5a2)24(a2+2)0得到答案.(3)l的方程為,即x+ay+24a0,過點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(mZ)由

15、于圓與直線4x+3y290相切,且半徑為5,所以 ,即|4m29|2因?yàn)閙為整數(shù),故m2故所求圓的方程為(x2)2+y22(2)把直線axy+50,即yax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a2)x+20,由于直線axy+50交圓于A,B兩點(diǎn),故4(5a2)24(a2+2)0,即22a25a0,由于a0,解得a,所以實(shí)數(shù)a的取值范圍是()(3)設(shè)符合條件的實(shí)數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+24a0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+24a0,解得由于,故存在實(shí)數(shù)使得過點(diǎn)P(2,4)的直線l垂直平分弦AB.【點(diǎn)睛】本題考查了

16、直線和圓的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.19(1) (2)為減函數(shù),為增函數(shù). (3)證明見解析【解析】(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,不等式,遞增得(),,先證,然后同樣放縮得出結(jié)論【詳解】解:(1)對求導(dǎo),得.因此.又因?yàn)?,所以曲線在點(diǎn)處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,因?yàn)椋詾闇p函數(shù).因?yàn)?,所以為增函?shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因

17、此,當(dāng)時(shí),即.令,得,即.因此,當(dāng)時(shí),.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時(shí),即.因此,即.令,得,即.當(dāng)時(shí),.因?yàn)?,所以,所?所以,當(dāng)時(shí),.所以,當(dāng)時(shí),成立.綜上所述,當(dāng)時(shí),成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,這是最關(guān)鍵的一步然后一步一步放縮即可證明本題屬于困難題20()存在點(diǎn)滿足題意,且,證明詳見解析;().【解析】()可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能

18、證明,則可得證,可通過我們反推出點(diǎn)對應(yīng)位置應(yīng)在處,進(jìn)而得證;()采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】()存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),所以,從而可得.又因?yàn)椋云矫?因?yàn)槠矫?,所以平面平?()如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,所以,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題21(1);(2)【解析】(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論