函數(shù)的連續(xù)和間斷點(diǎn)_第1頁
函數(shù)的連續(xù)和間斷點(diǎn)_第2頁
函數(shù)的連續(xù)和間斷點(diǎn)_第3頁
函數(shù)的連續(xù)和間斷點(diǎn)_第4頁
函數(shù)的連續(xù)和間斷點(diǎn)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、一、函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性1.函數(shù)的增量函數(shù)的增量.,),(,)()(0000的增量的增量稱為自變量在點(diǎn)稱為自變量在點(diǎn)內(nèi)有定義內(nèi)有定義在在設(shè)函數(shù)設(shè)函數(shù)xxxxxUxxUxf .)(),()(0的的增增量量相相應(yīng)應(yīng)于于稱稱為為函函數(shù)數(shù)xxfxfxfy xy0 xy00 xxx 0)(xfy x 0 xxx 0 x y y )(xfy 2.連續(xù)的定義連續(xù)的定義定義定義 1 1 設(shè)函數(shù)設(shè)函數(shù))(xf在在)(0 xU 內(nèi)有定義內(nèi)有定義, ,如如果當(dāng)自變量的增量果當(dāng)自變量的增量x 趨向于零時趨向于零時, ,對應(yīng)的函對應(yīng)的函數(shù)的增量數(shù)的增量y 也趨向于零也趨向于零, ,即即0lim0 yx 或或0)

2、()(lim000 xfxxfx, ,那末就稱函數(shù)那末就稱函數(shù))(xf在點(diǎn)在點(diǎn)0 x連續(xù)連續(xù), ,0 x稱為稱為)(xf的連續(xù)點(diǎn)的連續(xù)點(diǎn). .,0 xxx 設(shè)設(shè)),()(0 xfxfy ,00 xxx 就是就是).()(00 xfxfy 就就是是定義定義 2 2 設(shè)函數(shù)設(shè)函數(shù))(xf在在)(0 xU 內(nèi)有定義內(nèi)有定義, ,如果如果函數(shù)函數(shù))(xf當(dāng)當(dāng)0 xx 時的極限存在時的極限存在, ,且等于它在且等于它在點(diǎn)點(diǎn)0 x處的函數(shù)值處的函數(shù)值)(0 xf, ,即即 )()(lim00 xfxfxx 那末就稱函數(shù)那末就稱函數(shù))(xf在點(diǎn)在點(diǎn)0 x連續(xù)連續(xù). .:定義定義 .)()(, 0, 000

3、xfxfxx恒有恒有時時使當(dāng)使當(dāng)例例1 1.0, 0, 0, 0,1sin)(處連續(xù)處連續(xù)在在試證函數(shù)試證函數(shù) xxxxxxf證證, 01sinlim0 xxx, 0)0( f又又由定義由定義2知知.0)(處處連連續(xù)續(xù)在在函函數(shù)數(shù) xxf),0()(lim0fxfx 3.單側(cè)連續(xù)單側(cè)連續(xù);)(),()0(,()(0000處左連續(xù)處左連續(xù)在點(diǎn)在點(diǎn)則稱則稱且且內(nèi)有定義內(nèi)有定義在在若函數(shù)若函數(shù)xxfxfxfxaxf 定理定理.)()(00處既左連續(xù)又右連續(xù)處既左連續(xù)又右連續(xù)在在是函數(shù)是函數(shù)處連續(xù)處連續(xù)在在函數(shù)函數(shù)xxfxxf.)(),()0(,),)(0000處右連續(xù)處右連續(xù)在點(diǎn)在點(diǎn)則稱則稱且且內(nèi)有

4、定義內(nèi)有定義在在若函數(shù)若函數(shù)xxfxfxfbxxf 例例2 2.0, 0, 2, 0, 2)(連連續(xù)續(xù)性性處處的的在在討討論論函函數(shù)數(shù) xxxxxxf解解)2(lim)(lim00 xxfxx2 ),0(f )2(lim)(lim00 xxfxx2 ),0(f 右連續(xù)但不左連續(xù)右連續(xù)但不左連續(xù) ,.0)(處不連續(xù)處不連續(xù)在點(diǎn)在點(diǎn)故函數(shù)故函數(shù) xxf4.連續(xù)函數(shù)與連續(xù)區(qū)間連續(xù)函數(shù)與連續(xù)區(qū)間在區(qū)間上每一點(diǎn)都連續(xù)的函數(shù)在區(qū)間上每一點(diǎn)都連續(xù)的函數(shù),叫做在該區(qū)間上叫做在該區(qū)間上的的連續(xù)函數(shù)連續(xù)函數(shù),或者說函數(shù)在該區(qū)間上連續(xù)或者說函數(shù)在該區(qū)間上連續(xù).,)(,),(上連續(xù)上連續(xù)在閉區(qū)間在閉區(qū)間函數(shù)函數(shù)則稱則

5、稱處左連續(xù)處左連續(xù)在右端點(diǎn)在右端點(diǎn)處右連續(xù)處右連續(xù)并且在左端點(diǎn)并且在左端點(diǎn)內(nèi)連續(xù)內(nèi)連續(xù)如果函數(shù)在開區(qū)間如果函數(shù)在開區(qū)間baxfbxaxba 連續(xù)函數(shù)的圖形是一條連續(xù)而不間斷的曲線連續(xù)函數(shù)的圖形是一條連續(xù)而不間斷的曲線.例如例如,.),(內(nèi)是連續(xù)的內(nèi)是連續(xù)的有理函數(shù)在區(qū)間有理函數(shù)在區(qū)間例例3 3.),(sin內(nèi)內(nèi)連連續(xù)續(xù)在在區(qū)區(qū)間間函函數(shù)數(shù)證證明明 xy證證),( x任任取取xxxysin)sin( )2cos(2sin2xxx , 1)2cos( xx.2sin2xy 則則,0,時時當(dāng)當(dāng)對對任任意意的的 ,sin 有有,2sin2xxy 故故. 0,0 yx時時當(dāng)當(dāng).),(sin都是連續(xù)的都是

6、連續(xù)的對任意對任意函數(shù)函數(shù)即即 xxy二、函數(shù)的間斷點(diǎn)二、函數(shù)的間斷點(diǎn):)(0條件條件處連續(xù)必須滿足的三個處連續(xù)必須滿足的三個在點(diǎn)在點(diǎn)函數(shù)函數(shù)xxf;)()1(0處有定義處有定義在點(diǎn)在點(diǎn)xxf;)(lim)2(0存在存在xfxx).()(lim)3(00 xfxfxx ).()(),()(,00或間斷點(diǎn)或間斷點(diǎn)的不連續(xù)點(diǎn)的不連續(xù)點(diǎn)為為并稱點(diǎn)并稱點(diǎn)或間斷或間斷處不連續(xù)處不連續(xù)在點(diǎn)在點(diǎn)函數(shù)函數(shù)則稱則稱要有一個不滿足要有一個不滿足如果上述三個條件中只如果上述三個條件中只xfxxxf1.跳躍間斷點(diǎn)跳躍間斷點(diǎn).)(),0()0(,)(0000的的跳跳躍躍間間斷斷點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱點(diǎn)點(diǎn)但但存存在在右

7、右極極限限都都處處左左在在點(diǎn)點(diǎn)如如果果xfxxfxfxxf 例例4 4.0, 0,1, 0,)(處的連續(xù)性處的連續(xù)性在在討論函數(shù)討論函數(shù) xxxxxxf解解, 0)00( f, 1)00( f),00()00( ff.0為函數(shù)的跳躍間斷點(diǎn)為函數(shù)的跳躍間斷點(diǎn) xoxy2.可去間斷點(diǎn)可去間斷點(diǎn).)()(),()(lim,)(00000的的可可去去間間斷斷點(diǎn)點(diǎn)為為函函數(shù)數(shù)義義則則稱稱點(diǎn)點(diǎn)處處無無定定在在點(diǎn)點(diǎn)或或但但處處的的極極限限存存在在在在點(diǎn)點(diǎn)如如果果xfxxxfxfAxfxxfxx 例例5 5.1, 1,11, 10, 1,2)(處的連續(xù)性處的連續(xù)性在在討論函數(shù)討論函數(shù) xxxxxxxfoxy1

8、12xy 1xy2 解解, 1)1( f, 2)01( f, 2)01( f2)(lim1 xfx),1(f .0為函數(shù)的可去間斷點(diǎn)為函數(shù)的可去間斷點(diǎn) x注意注意 可去間斷點(diǎn)只要改變或者補(bǔ)充間斷處函可去間斷點(diǎn)只要改變或者補(bǔ)充間斷處函數(shù)的定義數(shù)的定義, 則可使其變?yōu)檫B續(xù)點(diǎn)則可使其變?yōu)檫B續(xù)點(diǎn).如例如例5中中, 2)1( f令令.1, 1,1, 10,2)(處連續(xù)處連續(xù)在在則則 xxxxxxf跳躍間斷點(diǎn)與可去間斷點(diǎn)統(tǒng)稱為第一類間斷點(diǎn)跳躍間斷點(diǎn)與可去間斷點(diǎn)統(tǒng)稱為第一類間斷點(diǎn). .特點(diǎn)特點(diǎn).0處處的的左左、右右極極限限都都存存在在函函數(shù)數(shù)在在點(diǎn)點(diǎn) xoxy1123.第二類間斷點(diǎn)第二類間斷點(diǎn).)(,)(0

9、0的的第第二二類類間間斷斷點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱點(diǎn)點(diǎn)在在右右極極限限至至少少有有一一個個不不存存處處的的左左、在在點(diǎn)點(diǎn)如如果果xfxxxf例例6 6.0, 0, 0,1)(處處的的連連續(xù)續(xù)性性在在討討論論函函數(shù)數(shù) xxxxxxf解解oxy, 0)00( f,)00( f.1為函數(shù)的第二類間斷點(diǎn)為函數(shù)的第二類間斷點(diǎn) x.斷斷點(diǎn)點(diǎn)這這種種情情況況稱稱為為無無窮窮間間例例7 7.01sin)(處的連續(xù)性處的連續(xù)性在在討論函數(shù)討論函數(shù) xxxf解解xy1sin ,0處沒有定義處沒有定義在在 x.1sinlim0不不存存在在且且xx.0為第二類間斷點(diǎn)為第二類間斷點(diǎn) x.斷斷點(diǎn)點(diǎn)這這種種情情況況稱稱為為

10、的的振振蕩蕩間間注意注意 不要以為函數(shù)的間斷點(diǎn)只是個別的幾個點(diǎn)不要以為函數(shù)的間斷點(diǎn)只是個別的幾個點(diǎn). , 0, 1)(是是無無理理數(shù)數(shù)時時當(dāng)當(dāng)是是有有理理數(shù)數(shù)時時當(dāng)當(dāng)xxxDy狄利克雷函數(shù)狄利克雷函數(shù)在定義域在定義域R內(nèi)每一點(diǎn)處都間斷內(nèi)每一點(diǎn)處都間斷,且都是第二類間且都是第二類間斷點(diǎn)斷點(diǎn). ,)(是無理數(shù)時是無理數(shù)時當(dāng)當(dāng)是有理數(shù)時是有理數(shù)時當(dāng)當(dāng)xxxxxf僅在僅在x=0處連續(xù)處連續(xù), 其余各點(diǎn)處處間斷其余各點(diǎn)處處間斷.o1x2x3xyx xfy , 1, 1)(是無理數(shù)時是無理數(shù)時當(dāng)當(dāng)是有理數(shù)時是有理數(shù)時當(dāng)當(dāng)xxxf在定義域在定義域 R內(nèi)每一點(diǎn)處都間斷內(nèi)每一點(diǎn)處都間斷, 但其絕對值處但其絕對值

11、處處連續(xù)處連續(xù).判斷下列間斷點(diǎn)類型判斷下列間斷點(diǎn)類型:例例8 8.0, 0, 0,cos)(,處處連連續(xù)續(xù)在在函函數(shù)數(shù)取取何何值值時時當(dāng)當(dāng) xxxaxxxfa解解xxfxxcoslim)(lim00 , 1 )(lim)(lim00 xaxfxx , a ,)0(af ),0()00()00(fff 要要使使,1時時故當(dāng)且僅當(dāng)故當(dāng)且僅當(dāng) a.0)(處連續(xù)處連續(xù)在在函數(shù)函數(shù) xxf, 1 a三、小結(jié)三、小結(jié)1.函數(shù)在一點(diǎn)連續(xù)必須滿足的三個條件函數(shù)在一點(diǎn)連續(xù)必須滿足的三個條件;3.間斷點(diǎn)的分類與判別間斷點(diǎn)的分類與判別;2.區(qū)間上的連續(xù)函數(shù)區(qū)間上的連續(xù)函數(shù);第一類間斷點(diǎn)第一類間斷點(diǎn):可去型可去型,跳躍型跳躍型.第二類間斷點(diǎn)第二類間斷點(diǎn):無窮型無窮型,振蕩型振蕩型.間斷點(diǎn)間斷點(diǎn)(見下圖見下圖)可去型可去型第一類間斷點(diǎn)第一類間斷點(diǎn)oyx跳躍型跳躍型無窮型無窮型振蕩型振蕩型第二類間斷點(diǎn)第二類間斷點(diǎn)oyx0 xoyx0 xoyx0 x思考題思考題 若若)(xf在在0 x連連續(xù)續(xù),則則| )(|xf、)(2xf在在0 x是是否否連連續(xù)續(xù)?又又若若| )(|xf、)(2xf在在0 x連連續(xù)續(xù),)(xf在在0 x是是否否連連續(xù)續(xù)?思考題解答思考題解答)(xf在在0 x連連續(xù)續(xù),)()

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論