解直角三角形(3)zmj-5565-44702_第1頁
解直角三角形(3)zmj-5565-44702_第2頁
解直角三角形(3)zmj-5565-44702_第3頁
解直角三角形(3)zmj-5565-44702_第4頁
解直角三角形(3)zmj-5565-44702_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、例例5 如圖,一艘海輪位于燈塔如圖,一艘海輪位于燈塔P的北偏東的北偏東60方向,距離燈塔方向,距離燈塔80海里海里的的A處,它沿正南方向航行一段時間后,到達位于燈塔處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東的南偏東30方向上的方向上的B處,這時,海輪所在的處,這時,海輪所在的B處距離燈塔處距離燈塔P有多遠(精確有多遠(精確到到0.01海里)?海里)?解:如圖解:如圖 ,在,在RtAPC中,中,PCPAcos(9060)80cos3069.28在在RtBPC中,中,B30sinB=PC/PB, PB=PC/sinB=69.28/sin 30=138.56當海輪到達位于燈塔當海輪到達位

2、于燈塔P的南偏東的南偏東30方向時,它距離燈塔方向時,它距離燈塔P大約大約138.56海里海里6030PBCA 解直角三角形有廣泛的應用,解決問題時,要根據(jù)實際情況靈活運用解直角三角形有廣泛的應用,解決問題時,要根據(jù)實際情況靈活運用相關知識,例如,當我們要測量如圖所示大壩的高度相關知識,例如,當我們要測量如圖所示大壩的高度h時,只要測出仰時,只要測出仰角角a和大壩的坡面長度和大壩的坡面長度l,就能算出,就能算出h=lsina,但是,當我們要測量如圖所,但是,當我們要測量如圖所示的山高示的山高h時,問題就不那么簡單了,這是由于不能很方便地得到仰角時,問題就不那么簡單了,這是由于不能很方便地得到仰

3、角a和山坡長度和山坡長度l化整為零,積零為整,化曲為直,以直代曲的解決問題的策略化整為零,積零為整,化曲為直,以直代曲的解決問題的策略與測壩高相比,測山高的困難在于;壩坡是與測壩高相比,測山高的困難在于;壩坡是“直直”的,而山坡是的,而山坡是“曲曲”的,怎樣解決這樣的問題呢?的,怎樣解決這樣的問題呢?hhll 我們設法我們設法“化曲為直,以直代曲化曲為直,以直代曲” 我們可以把山坡我們可以把山坡“化整化整為零為零”地劃分為一些小段,如圖表示其中一部分小段,劃分小地劃分為一些小段,如圖表示其中一部分小段,劃分小段時,注意使每一小段上的山坡近似是段時,注意使每一小段上的山坡近似是“直直”的,可以量

4、出這的,可以量出這段坡長段坡長l1,測出相應的仰角,測出相應的仰角a1,這樣就可以算出這段山坡的高度,這樣就可以算出這段山坡的高度h1=l1sina1. 在每小段上,我們都構造出直角三角形,利用上面的方法分別算在每小段上,我們都構造出直角三角形,利用上面的方法分別算出各段山坡的高度出各段山坡的高度h1,h2,hn,然后我們再然后我們再“積零為整積零為整”,把,把h1,h2,hn相加,于是得到山高相加,于是得到山高h.hl 以上解決問題中所用的以上解決問題中所用的“化整為零,積零為整化整為零,積零為整”“”“化曲為直,以直代曲化曲為直,以直代曲”的做法,就是高等數(shù)學中微積分的基本思想,它在數(shù)學中

5、有重要地位,在的做法,就是高等數(shù)學中微積分的基本思想,它在數(shù)學中有重要地位,在今后的學習中,你會更多地了解這方面的內(nèi)容今后的學習中,你會更多地了解這方面的內(nèi)容 1. 海中有一個小島海中有一個小島A,它的周圍,它的周圍8海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在行,在B點測得小島點測得小島A在北偏東在北偏東60方向上,航行方向上,航行12海里到達海里到達D點,這時測點,這時測得小島得小島A在北偏到在北偏到30方向上,如果漁船不改變航線繼續(xù)向東航行,有沒有方向上,如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?觸礁的危險?BADF解:由點解:由點A作作BD的垂

6、線的垂線交交BD的延長線于點的延長線于點F,垂足為,垂足為F,AFD=90由題意圖示可知由題意圖示可知DAF=30設設DF= x , AD=2x則在則在RtADF中,根據(jù)勾股定理中,根據(jù)勾股定理222223AFADDFxxx在在RtABF中,中,tanAFABFBF3tan3012xx解得解得x=6AF=10.410.4 8 沒有沒有觸礁危險觸礁危險練習練習30602. 如圖,攔水壩的橫斷面為梯形如圖,攔水壩的橫斷面為梯形ABCD(圖中(圖中i=1:3是指坡面的鉛直高是指坡面的鉛直高度度DE與水平寬度與水平寬度CE的比),根據(jù)圖中數(shù)據(jù)求:的比),根據(jù)圖中數(shù)據(jù)求:(1)坡角)坡角a和和;(2)斜坡)斜坡AB的長(精確到的長(精確到0.1m)BADFEC6mi=1:3i=1:1.5解解:(:(1)在)在RtAFB中,中,AFB=90tan11.5AFiBF :33.7 在在RtCDE中,中,CED=90tan1:3DEiCE 18.4利用解直角三角形的知識解決實際問題的一般過程是:利用解直角三角形的知識解決實際問題的一般過程是:(1)將實際問題抽象為數(shù)學問題(畫出平面圖形,轉化為解直角)將實際問題抽象為數(shù)學問題(畫出平面圖形,轉化為解直角三角形的問題);三角形的問題)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論