2022屆高三數(shù)學(xué)一輪復(fù)習(原卷版)第六章 6.2等差數(shù)列-學(xué)生版_第1頁
2022屆高三數(shù)學(xué)一輪復(fù)習(原卷版)第六章 6.2等差數(shù)列-學(xué)生版_第2頁
2022屆高三數(shù)學(xué)一輪復(fù)習(原卷版)第六章 6.2等差數(shù)列-學(xué)生版_第3頁
2022屆高三數(shù)學(xué)一輪復(fù)習(原卷版)第六章 6.2等差數(shù)列-學(xué)生版_第4頁
2022屆高三數(shù)學(xué)一輪復(fù)習(原卷版)第六章 6.2等差數(shù)列-學(xué)生版_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、 第1課時進門測1、判斷下列結(jié)論是否正確(請在括號中打“”或“×”)(1)若一個數(shù)列從第二項起每一項與它的前一項的差都是常數(shù),則這個數(shù)列是等差數(shù)列()(2)等差數(shù)列an的單調(diào)性是由公差d決定的()(3)等差數(shù)列的前n項和公式是常數(shù)項為0的二次函數(shù)()(4)已知等差數(shù)列an的通項公式an32n,則它的公差為2.()2、在等差數(shù)列an中,若a24,a42,則a6等于()a1 b0 c1 d63、已知等差數(shù)列an前9項的和為27,a108,則a100等于()a100 b99 c98 d974、已知數(shù)列an中,a33,an1an2,則a2a4_,an_.5、若等差數(shù)列an滿足a7a8a9&g

2、t;0,a7a10<0,則當n_時,an的前n項和最大作業(yè)檢查無第2課時階段訓(xùn)練題型一等差數(shù)列基本量的運算例1(1)在數(shù)列an中,若a12,且對任意的nn*有2an112an,則數(shù)列an前10項的和為()a2 b10 c. d.(2)已知an為等差數(shù)列,sn為其前n項和若a16,a3a50,則s6_.【同步練習】(1)設(shè)sn是等差數(shù)列an的前n項和,已知a23,a611,則s7等于()a13 b35c49 d63(2)已知an是等差數(shù)列,sn是其前n項和若a1a3,s510,則a9的值是_題型二等差數(shù)列的判定與證明例2已知數(shù)列an中,a1,an2(n2,nn*),數(shù)列bn滿足bn(nn*

3、)(1)求證:數(shù)列bn是等差數(shù)列;(2)求數(shù)列an中的最大項和最小項,并說明理由引申探究例2中,若條件變?yōu)閍1,nan1(n1)ann(n1),試求數(shù)列an的通項公式【同步練習】(1)在數(shù)列an中,若a11,a2,(nn*),則該數(shù)列的通項為()aan bancan dan(2)數(shù)列an滿足a11,a22,an22an1an2.設(shè)bnan1an,證明bn是等差數(shù)列;求an的通項公式第3課時階段重難點梳理1等差數(shù)列的定義一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示2等差數(shù)列的通項公式如果等差數(shù)列an

4、的首項為a1,公差為d,那么它的通項公式是ana1(n1)d.3等差中項由三個數(shù)a,a,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列這時,a叫做a與b的等差中項4等差數(shù)列的常用性質(zhì)(1)通項公式的推廣:anam(nm)d(n,mn*)(2)若an為等差數(shù)列,且klmn(k,l,m,nn*),則akalaman.(3)若an是等差數(shù)列,公差為d,則a2n也是等差數(shù)列,公差為2d.(4)若an,bn是等差數(shù)列,則panqbn也是等差數(shù)列(5)若an是等差數(shù)列,公差為d,則ak,akm,ak2m,(k,mn*)是公差為md的等差數(shù)列(6)數(shù)列sm,s2msm,s3ms2m,構(gòu)成等差數(shù)列5等差數(shù)列的前n項

5、和公式設(shè)等差數(shù)列an的公差為d,其前n項和sn或snna1d.6等差數(shù)列的前n項和公式與函數(shù)的關(guān)系snn2n.數(shù)列an是等差數(shù)列snan2bn(a,b為常數(shù))7等差數(shù)列的前n項和的最值在等差數(shù)列an中,若a1>0,d<0,則sn存在最大值;若a1<0,d>0,則sn存在最小值【知識拓展】等差數(shù)列的四種判斷方法(1)定義法:an1and(d是常數(shù))an是等差數(shù)列(2)等差中項法:2an1anan2 (nn*)an是等差數(shù)列(3)通項公式:anpnq(p,q為常數(shù))an是等差數(shù)列(4)前n項和公式:snan2bn(a,b為常數(shù))an是等差數(shù)列重點題型訓(xùn)練題型三等差數(shù)列性質(zhì)的

6、應(yīng)用命題點1等差數(shù)列項的性質(zhì)例3(1)已知an為等差數(shù)列,若a1a5a98,則an前9項的和s9_,cos(a3a7)的值為_(2)已知an,bn都是等差數(shù)列,若a1b109,a3b815,則a5b6_.命題點2等差數(shù)列前n項和的性質(zhì)例4(1)設(shè)等差數(shù)列an的前n項和為sn,且s312,s945,則s12_.(2)在等差數(shù)列an中,a12 018,其前n項和為sn,若2,則s2 018的值等于()a2 018 b2 016c2 019 d2 017【同步練習】(1)在等差數(shù)列an中,已知a4a816,則該數(shù)列前11項和s11等于()a58 b88 c143 d176(2)等差數(shù)列an與bn的前

7、n項和分別為sn和tn,若,則等于()a. b.c. d.題型四 等差數(shù)列的前n項和及其最值例5 (1)在等差數(shù)列an中,2(a1a3a5)3(a7a9)54,則此數(shù)列前10項的和s10等于()a45 b60c75 d90(2)在等差數(shù)列an中,s10100,s10010,則s110_.例6 在等差數(shù)列an中,已知a120,前n項和為sn,且s10s15,求當n取何值時,sn取得最大值,并求出它的最大值思導(dǎo)總結(jié)一、等差數(shù)列運算問題的通性通法(1)等差數(shù)列運算問題的一般求法是設(shè)出首項a1和公差d,然后由通項公式或前n項和公式轉(zhuǎn)化為方程(組)求解(2)等差數(shù)列的通項公式及前n項和公式,共涉及五個量

8、a1,an,d,n,sn,知其中三個就能求另外兩個,體現(xiàn)了用方程的思想解決問題二、等差數(shù)列的四個判定方法(1)定義法:證明對任意正整數(shù)n都有an1an等于同一個常數(shù)(2)等差中項法:證明對任意正整數(shù)n都有2an1anan2后,可遞推得出an2an1an1ananan1an1an2a2a1,根據(jù)定義得出數(shù)列an為等差數(shù)列(3)通項公式法:得出anpnq后,得an1anp對任意正整數(shù)n恒成立,根據(jù)定義判定數(shù)列an為等差數(shù)列(4)前n項和公式法:得出snan2bn后,根據(jù)sn,an的關(guān)系,得出an,再使用定義法證明數(shù)列an為等差數(shù)列三、等差數(shù)列的性質(zhì)(1)項的性質(zhì):在等差數(shù)列an中,aman(mn)

9、dd(mn),其幾何意義是點(n,an),(m,am)所在直線的斜率等于等差數(shù)列的公差(2)和的性質(zhì):在等差數(shù)列an中,sn為其前n項和,則s2nn(a1a2n)n(anan1);s2n1(2n1)an.作業(yè)布置1在數(shù)列an中,an1an2,a25,則an的前4項和為()a9 b22c24 d322在等差數(shù)列an中,已知a12,a2a313,則a4a5a6等于()a40 b42c43 d453已知等差數(shù)列an滿足a23,snsn351(n>3),sn100,則n的值為()a8 b9c10 d114各項均不為零的等差數(shù)列an中,若an1aan1(nn*,n2),則s2 016等于()a0

10、b2 c2 015 d4 0325已知數(shù)列an滿足an1an,且a15,設(shè)an的前n項和為sn,則使得sn取得最大值的序號n的值為()a7 b8c7或8 d8或9*6.設(shè)數(shù)列an的前n項和為sn,若為常數(shù),則稱數(shù)列an為“吉祥數(shù)列”已知等差數(shù)列bn的首項為1,公差不為0,若數(shù)列bn為“吉祥數(shù)列”,則數(shù)列bn的通項公式為()abnn1 bbn2n1cbnn1 dbn2n17已知數(shù)列an中,a11且(nn*),則a10_.8設(shè)數(shù)列an的通項公式為an2n10(nn*),則|a1|a2|a15|_.9設(shè)等差數(shù)列an,bn的前n項和分別為sn,tn,若對任意自然數(shù)n都有,則的值為_10設(shè)數(shù)列an滿足:a11,a23,且2nan(n1)an1(n1)an1,則a20的值是_11在等差數(shù)列an中,a11,a33.(1)求數(shù)列a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論