




已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ORIGINALARTICLESurfacemicrostructurereplicationininjectionmoldingUffeArlTheilade&HansNrgaardHansenReceived:13January2006/Accepted:20July2006/Publishedonline:24October2006#Springer-VerlagLondonLimited2006AbstractInrecentyears,polymercomponentswithsur-facemicrostructureshavebeeninrisingdemandforapplicationssuchaslab-on-a-chipandopticalcomponents.Injectionmoldinghasproventobeafeasibleandefficientwaytomanufacturesuchcomponents.Ininjectionmolding,themoldsurfacetopographyistranscribedontotheplasticpartthroughcomplexmechanisms.Thisreplication,how-ever,isnotperfect,andthereplicationqualitydependsontheplasticmaterialproperties,thetopographyitself,andtheprocessconditions.Thispaperdescribesanddiscussesaninvestigationofinjectionmoldingofsurfacemicrostruc-tures.Thefundamentalproblemofsurfacemicrostructurereplicationhasbeenstudied.Theresearchisbasedonspecificmicrostructuresasfoundinlab-on-a-chipproductsandonroughsurfacesgeneratedfromEDM(electrodischargemachining)moldcavities.Emphasisisputontheabilitytoreplicatesurfacemicrostructuresundernormalinjection-moldingconditions,i.e.,withcommoditymateri-alswithintypicalprocesswindows.Itwasfoundthatwithintypicalprocesswindowsthereplicationqualitydependssignificantlyonseveralprocessparameters,andespeciallythemoldtemperature.Forthespecificmicrostructures,evidencesuggeststhatstep-heightreplicationqualitydependslinearlyonstructurewidthinacertainrange.KeywordsMicrostructures.Molding.Microinjectionmolding.Microtopography1IntroductionTheuseofmicroproductsandmicrocomponentshasbeenstronglyincreasingoverthepastdecade.Applicationspointattheuseofpolymersasfeasibleengineeringmaterials.Microtechnologyapplications,suchaslab-on-a-chipproductsofteninvolvesurfacemicrostructures,e.g.,intheformoffluidchannels.Moreover,asproductsarescaleddown,thesurfaceingeneralbecomesincreasinglyimportant.Hence,whetherintheformoffunctionalstructuressuchasfluidchannelsormoregeneralsurfacepropertiessuchasroughness,theabilitytocontrolthesurfacetopographyisimportantinthefieldofmicrotechnology.Injectionmoldinghasproventobeafeasibleandefficientwaytomanufacturecomponentslikelab-on-a-chippartsinpolymermaterials.Ininjectionmolding,themoldsurfacetopographyistranscribedontotheplasticpartthroughcomplexmechanisms.Thisreplication,however,isnotperfect,andthereplicationqualitydependsonthepolymermaterialproperties,thetopogra-phyitself,andtheprocessconditions.Thispaperdescribesanddiscussesaninvestigationofinjectionmoldingofsurfacemicrostructures.Thescopeisthegeneralreplicationproblempertainingbothreplicationofspecificstructuresandreplicationofroughsurfaces.Emphasisisputontheabilitytoreplicatesurfacemicrostructuresundernormalinjection-moldingcondi-tions,notablywithlow-costmaterialsatmoderatemoldtemperatures.Overthelast10yearsorso,impressivereplicationresultshavebeenreportedforinjectionmoldingwithhighaspectratiomicrostructures.Figure1providesanoverviewofsomeofthedimensionalscalesrecentlyreported19.ThepreferredmaterialsforinjectionmoldingwithmicrostructuredsurfacesseemtobePC(polycarbonate)16IntJAdvManufTechnol(2007)33:157166DOI10.1007/s00170-006-0732-yU.A.Theilade:H.N.Hansen(*)DepartmentofManufacturingEngineeringandManagement,TechnicalUniversityofDenmark,Produktionstorvet,Building427S,2800Kgs.Lyngby,Denmarke-mail:hnhipl.dtu.dkandPMMA(polymethylmetacrylate)3,4,6,8,butnovelmaterialssuchasCOC(cyclicolefincopolymer)3,6havealsoreceivedfocus.Asthemoldtemperaturehasbeenidentifiedasthemostcriticalprocessparameter13toensurehighfidelityreplication,theconventionalinjection-moldingprocesshastypicallybeenmodifiedtotheso-calledvario-thermconcept1orrunwithpermanentlyhighmoldtemperatures2.Replicationofsub-micronstructureswithaspectratiosofmorethantencanbeachievedbyapplyinghotmoldsurfaces2.Undervario-therm,themoldsurfaceisheatedtoatemperatureabovetheplasticmaterialstransitiontemperatureandsubsequent-lycooledinordertofacilitatedemolding.Thevario-thermprocessisrelativelycomplicatedcomparedtoconventionalinjectionmoldingandresultsincycletimesoftenlongerthana1min1.Incomparison,equivalentcycletimesinconventionalinjectionmoldingdowntoapproximately5scanbeachieved.Withconventionalinjectionmoldingandwithintypicalprocesswindows,near-perfectreplicationofrectangular0.20.2mprofileshasbeenachieved3.However,inthisprocess,specializedmaterialgradeswereemployed.2SurfacetechnologyThesurfacegeometryofanartefactcanbedescribedatdifferentgeometricallevelscommonlystratifiedasform,waviness,androughness.Attheextremes,formdescribesthemacroscopicgeometryofthesurface,whileroughnessdescribesthesurfacemicrogeometryofthepart.Theconceptoftopographyconcernsallgeometricsurfacefeatures10.Engineeredsurfacescanbeclassifiedasstructuredorunstructuredsurfaces.Structuredsurfacescontainadeterministicandsystematicstructurewithorwithoutdirection.Unstructuredengineeredsurfacesappearasarandomstructure,butareresultsofdeliberatesurfacealterationthroughamanufacturingprocess10.Thetopicofsurfacetechnologyinvolvesthreemainelements:Generation,function,andcharacterization,asdescribedinthefollowingtext11.2.1GenerationInjectionmoldingisinherentlyareplicationprocesswheretheplasticpartisproducedasanegativereplicaofthemoldcavity.Thereplicationprocessdefinesthegeometricalboundariesoftheplasticpartandoccursatdifferentgeometricallevels.Ingeneral,thereplicationisnotperfect,andtheplasticpartdiffersgeometricallyfromtheinversegeometryofthemoldcavity.Itisdesirabletobeabletocontrolthedegreeofreplicationperfectionorreplicationquality.Thisrequiressomeunderstandingofthephysicalmechanismsofreplicationorsimilarempiricallybasedknowledge.Thenatureofreplicationimperfectiondiffersbetweenthegeometricallevels.Atthemacrolevel,replicationimperfectionistypicallyobservedasshrinkageandwarp,andinmorespecialcases,assinkmarks.Suchphenomenaarerelativelywellunderstoodandcanbepredictedanalytically12,13ornumerically14,15withconsiderableaccuracy.Atthemicrolevel,replicationisaquestionofmold-to-partsurfacetopographytranscription.Thesemechanismsare,however,lesswellunderstood.2.2FunctionThesurfacetopographyofinjection-moldedplasticpartscanbeimportantforaestheticalandtechnicalreasons.TheFig.1Replicatedsurface-fea-turedimensionsforasampleofpublishedresearchinthefieldofmicroinjectionmolding19.Bubblesizeindicatesreplicatedaspectratio;shadedbubbleindicatesthatelevatedmoldtemperaturewasapplied158IntJAdvManufTechnol(2007)33:157166aestheticalimplicationsofsurfacetopographyrelatetovisualandtactileperceptionissuessuchasgloss,colorperception,andgeneral“l(fā)ook-and-feel”experience.Theseparametershaveahighpriorityinmanyelectronicconsumerproductslikemobilephonesandaudio-visualequipment16.Surfacemicrotopographycanalsohaveaestheticalrelevancewhenusedtoconcealsurfacedefectssuchassinkmarksandweldlines17,18.ThetechnicalrelevanceofsurfacemicrotopographyiscomprisedofabroadspectrumofperformancerelatedfunctionsandmechanismsasdemonstratedinTable119.Thesetopography-dependentpropertiesarerelevantforalargenumberoftraditionaltechnicalcomponents.Withtheemergenceofmicroengineeringandnanotechnology,additionalfunctionalaspectsofsurfacetopographyfollow.Importantapplicationsinthesefieldswheresurfacetopographyiscrucialincludecomputercomponents,microelectro-mechanicalsystems(MEMS),biomedicalsystems,opticalapplications,andchemicalsystems20.Inconnec-tionwithinjectionmolding,manyoftheseapplicationsarerelevant.AccordingtoMnkknenetal.3,prominentexamplesincludeTAS(micrototalanalysissystems)orlab-on-a-chipcomponents,CDs,DVDs,securityanddecorativeholograms,brightness-enhancementfoils,lightcollimators,andDOEs(diffractiveopticalelements).AspotentialapplicationsforHARMs(highaspectratiomicro-structures),Despaetal.7mentionheatexchangers,catalystsubstrates,andsealfaces.AdditionalexamplesofapplicationsareshowninTable28.MEMSandopticalsurfacescangenerallyberegardedasengineeredstructuredsurfacesand,assuch,fallinanothercategorythane.g.,EDMsurfaces.However,replicationofthestructuredandunstructuredsurfaceswithinjectionmoldingconceptuallyembodiesthesameproblem.Asubstantialnumberofarticlesaboutthereplicationofstructuredsurfaceshavebeenpublished,buttheliteratureonroughnessreplicationininjectionmoldingisquitescarce.2.3CharacterizationThetopographicalcharacterizationofplasticpartsrepre-sentsachallengeofitsown.Theweaklyreflectingandrelativelysoftplasticsurfacesposetoughrequirementsforthecharacterizationinstruments10,21,andcontact-lesscharacterizationispreferred.For21/2Dstructures,theISO5436step-heightdefinitionlendsitselfwellasatopographicalamplitudemeasure(Fig.2).Concerningroughnesscharacterization,three-dimensionaltopographycharacterizationisarelativelynovelareathatisstillbeingdeveloped.Standardizedcharacterizationproce-duresdonotexistandcarefulmetrologicalconsiderationsmustbegiventotheindividualcases.Inthetwo-dimensionalregime,topographyparametersarewellestablishedandstandardizedasinISO4287.Asimilarbodyofstandardshasnotyetbeenestablishedforthree-dimensionalparameters.Aprimarysetofthree-dimensionalparameterswasproposedbyStoutandBlunt19.Theseso-calledBirmingham-14Table1ExamplesoffunctionalimplicationsofsurfacemicrotopographySurface-usecategoryFunction/mechanismTranslationalsurfacesFrictionWearSealingStaticcontactsurfacesAdhesionandbondingFatigueStressFractureNon-contactsurfacesReflectivityGlossPlatingPaintingHygieneBasedon19Table2OverviewandexamplesofMEMSandMEMS-likeapplicationsTypeofapplicationExamplesElectro-opticalcomponentsSwitchesDiffractiongratingsMiniaturelensesMirrorsMechanicaldevicesWatchcomponentsPrinterheadsAutomotivesensorsMicro-heatexchangersMicropumpsMedicalandchemicalchipsFuelcellsHearingaidsGenechipsDrugdeliverysystemsBio-sensorsCompiledfrom8Fig.2FatlinesindicateISO5436step-heightreferences.Axisunits:mIntJAdvManufTechnol(2007)33:157166159parameterscanberegardedasadefactostandard.Inthecurrentpaper,thescopeislimitedtotheamplitudeparametersoftheBirmingham-14parameters(excludingSz)aslistedinTable3.3MicroinjectionmoldingandreplicationMicroinjectionmoldingcanbeusedastheheadlineforinjectionmoldingofcomponentswithoneofthefollowingcharacteristics:Verylowshotweightswithcriticaldimensionsinthemrange.Largerproductswithfunctionalfeaturesandatleastonecriticaldimensioninthemrange.Conceptually,topographicalreplicationqualitycanbedefinedasthedegreeofsimilaritybetweentheplasticandtheinvertedmoldsurface.Asthereplicationprocesstrans-formspositivetopographytonegative,perfectreplicationcorrespondstotheinvertedmoldsurface.Thereplicationofsurfacemicrostructuresininjectionmoldingisbelievedtobedeterminedbythefollowingthreemainfactors:DrivingforceMaterialdeformabilityMicrostructuregeometryThedrivingforceisestablishedbythecavitypressurethatarisesduetothecavityfillingandlatertheholdingpressure.Materialdeformabilityiscontrolledbymaterialpropertiessuchasviscosityandelasticityofthematerial,whichagainarestronglyinfluencedbythetemperature.Insomecases,thematerialdeformabilitymaybeattributedtothesizeofthefrozenlayerofplasticmaterialagainstthemoldwall.Themicrostructuregeometryaffectstherepli-cationinsuchawaythatsmallerstructureswithhigheraspectratiosareincreasinglymorechallengingtoreplicate.4Replicationofaspecificstructure4.1Experimentalset-up:specificstructureTheexperimentalworkwasbasedonasimple100241mmruler-typepartmoldedinatwo-platemoldwithaconven-tionalcoolingsystemandacoldrunnersystemincludinga0.6-mmfilm/fangate.Thisgeometricalconfigurationensuredanevenandessentiallyone-dimensionalmeltfrontadvancementinthecavity.Thecavitywasequippedwithnickelinsertscontaining21/2Drectangularstructureswithheightsof9mandaspectratiosfrom0.2to1,manufacturedbylithographyandsubsequentelectrochem-icalplating(Table4).ProductiontookplacewithanEngelES80/25HLinjection-moldingmachineandthePP(polypropylene)gradeBasellMoplenHP501H(Type:Homopolymer;meltflowrate(MFR):2.1g/10min(230C/2.16kgISO1133);heatdeflectiontemperatureB(0.45MPa):85C(ISO75B-1,2).Themoldtemperaturewaskeptconstantatapprox-imately50C,whilebarreltemperaturesof220,250,and280Cwereemployed.Injectionflowrateandholdingpressure(switch-overatapproximately99%partfilling)weresetat35cm3/sand44MPa(melt),respectively.Atallbarreltemperaturelevels,additionalserieswererunwithinjectionflowratesof20and50cm3/s.Finally,theeffectofhighholdingpressure(89MPa)wasexploredat220Cbarreltemperature(Table5).DetailedprocessanalysiswascarriedoutwiththesimulationsoftwareMoldFlowMPI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)2萬噸抗靜電擦拭布項目可行性研究報告(模板)
- 中西方大學(xué)教育的異同
- 心理護(hù)理診斷與措施課件
- 大學(xué)比賽策劃書1
- 揚州大學(xué)廣陵學(xué)院《中學(xué)化學(xué)實驗研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘭州工業(yè)學(xué)院《成本會計理論與實務(wù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 安全教育主題班會方案安全主題班會流程
- 華東理工大學(xué)《數(shù)據(jù)清洗》2023-2024學(xué)年第二學(xué)期期末試卷
- 贛東學(xué)院《玉器鑒賞》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川西南航空職業(yè)學(xué)院《非織造工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 詳解 強基計劃
- 餐飲場所消防安全培訓(xùn)
- 2023年四川省雅安市長江造林局蜀西分局招聘4人(共500題)筆試必備質(zhì)量檢測、歷年高頻考點模擬試題含答案解析
- 鄉(xiāng)村衛(wèi)生室服務(wù)一體化管理工作制度
- 醫(yī)學(xué)英語術(shù)語解密-福建醫(yī)科大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 醫(yī)用耗材采購簡易流程圖
- 第六章電力系統(tǒng)自動低頻減載裝置
- 新能源設(shè)計專業(yè)考試題庫匯總(附答案)
- 微生物學(xué)(細(xì)胞型)知到章節(jié)答案智慧樹2023年哈爾濱師范大學(xué)
- 辯護(hù)詞貪污罪、受賄罪
- 術(shù)后1月 省中乳腺breast-q量表附有答案
評論
0/150
提交評論