




已閱讀5頁,還剩72頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
.,1.0BasicWavefrontAberrationTheoryForOpticalMetrology,ChangchunInstituteofOpticsandFineMechanicsandPhysics,Dr.ZhangXuejun,.,ThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.,.,Formostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).,NotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasuredalongtheray.,.,1.1SignConvention,TheOPDispositiveiftheaberratedwavefrontleadstheidealwavefront.Inotherword,apositiveaberrationwillfocusinfrontoftheparaxial(Gaussian)imageplane.,RightHandedCoordinates:ZaxisisthelightpropagationdirectionXaxisisthemeridionalortangentialdirectionYaxisisthesagittaldirection,.,Thedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.,Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.,x=cosy=sin,.,1.2AberrationFreeSystem,Iftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.,.,DiametertothefirstzeroringiscalledthediameterofAiryDisk,:workingwavelengthF#:fnumberofthesystem,.,Finiteconjugate,NA:numericalApertureNA=nsinu,F#W:WorkingFnumber,Ruleofthumb:forvisiblelight,0.5m,DAiryF#inmicrons,.,x,y:coordinatesmeasuredintheexitpupilx0,y0:coordinatesmeasuredinthefocalplaneI0:intensityofincidentwavefront(constant):wavelengthofincidentwavefrontf:focallengthoftheopticalsystemA:amplitudeintheexitpupil(x,y):thephasetransmissionfunctionintheexitpupil,.,Foraberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.,.,Thefractionofthetotalenergycontainedinacircleofradiusraboutthediffractionpatterncenterisgivenby:,.,r,AngularResolution-RayleighCriterion,.,Generallyamirrorsystemwillhaveacentralobscuration.Ifeistheratioofthediameterofthecentralobscurationtothemirrordiameterd,andiftheentirecircularmirrorofdiameterdisuniformlyilluminated,thepowerperunitsolidangleisgivenby,.,.,isinlp/mm,TheCut-Offfrequencyofanopticalsystemis:,.,Features:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength,ObscuredSystem,UnobscuredSystem,Features:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly,.,1.3SphericalWavefront,DefocusandLateralShift,AperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:,Sagequation,.,Defocus,Originalwavefront:,Newwavefront:,Defocusterm,IncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamountz(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:,.,DepthofFocus,Ruleofthumb:forvisiblelight,0.5m,Z(F#)2inmicrons,ByuseofRayleighCriterion:,ThesmallertheF#,orthelargertherelativeaperture,thesmallertheDepthofFocus,sotheharderthealignment.,.,.,Lateral(Transverse)Shift,InsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:,Forthesamereason,ifmovealongYaxis,then:,.,Ageneralsphericalwavefront:,Thisequationrepresentsasphericalwavefrontwhosecenterofcurvatureislocatedatthepoint(X,Y,Z).,TheOPDis:,Thisthreetermsareadditiveforthemisalignment,someorallofthemshouldberemovedfromthetestresultfordifferenttestconfigurations.,.,1.4TransverseandLongitudinalAberration,Ingeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(x,y,z)asafunctionof(x,y).,.,WavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.,.,1.5SeidelAberrations,Inarealopticalsystem,theformofthewavefrontaberrationscanbeextremlycomplexduetotherandomerrorsindesign,fabricationandalignment.AccordingtoWelford,thiswavefrontaberrationcanbeexpressedasapowerseriesof(h,x,y):,a3termgivesrisetothephaseshiftoverthatisconstantacrosstheexitpupil.Itdoesntchangetheshapeofthewavefrontandhasnoeffectontheimage,usuallycalledPiston.b1tob5termshavefourthdegreeforh,x,ywhenexpressedaswavefrontaberrationorthirddegreeastransverseaberration,usuallycalledfourth-orderorthirdorderaberrations.,h:fieldcoordinatesx,y:coordinatesatexitpupil,.,.,Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.,.,WavefrontAberrationExpansion,.,ClassicalSeidelAberrations,.,Whatdoaberrationslooklike?,.,.,FieldCurvature,Wheredoaberrationscomefrom?,.,Distortion,.,Astigmatism,W222,.,.,Coma,W131,.,WarrenSmith,ModernOpticalEngineering,P65,SphericalAberration,W=W0404,.,+,W=W0404,W=W0202,W=-1W0202+W0404,SphericalAberration+Defocus,.,Through-focusDiffractionImage(WithSphericalAberration),.,Wavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.,Importanttoknow,.,Caustic,.,Specifiesthesizeofaberration,Basicformofaberration,Theaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.,1.6AberrationCoefficients,.,.,TheLagrangeInvariant,TheLagrangeInvariantholdsatanyplanebetweenobjectandimage.,=,Forobjectatinfinity:,.,ParaxialRayTracing,SnellsLaw,.,L=,SeidelCoefficientTable,.,SeidelCoefficientCalculationforaSinglelet,.,CalculationbyZemax,.,CalculationbySeidelCoefficientFormula,.,.,TheThinLensForm,Theaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.,.,.,TheStructureAberrationCoefficient,RolandV.Shack,.,TheThinLensBending,Itispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.,X:,Minimumsphericalaberration,IfYisconstant,then,Ifobjectatinfinity,Y=1,n=1.5,then,.,Minimumcoma,Ifobjectatinfinity,Y=1,n=1.5,then,Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:,.,ZemaxResult,CalculationUsingThinLensForm,.,Forobjectatinfinity:,=,Forthinlensisinair,n=1,rearrangethethinlensformula:,.,1.7ZernikePolynomials,Ofteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.,.,Zernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:,.,canbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinateandtheotherdependsonlyontheangularcoordinate.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesntchangetheformofthepolynomials:,.,canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:,Where:sinfunctionisusedforn-2m0cosfunctionisusedforn-2m0,.,SothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:,WhereAnmisthecoefficientofZerniketermUnm.,.,4thZernikepolynomials,.,Re-orderedZernikepolynomials(first36terms),.,1,2,3,5,4,6,7,8,PlotsofZernikepolynomials#1#8,.,9,10,11,12,13,14,15,PlotsofZernikepolynomials#9#15,.,PlotsofZernikepolynomials#16#24,16,17,18,19,20,21,22,23,24,.,33,PlotsofZernikepolynomials#25#36,25,26,28,27,29,30,32,31,35,34,.,Zernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.,AdvantagesofusingZernikepolynomials,.,CautionsofusingZernikepolynomials,Midorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfaceprofilecannotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.,.,RelationshipBetweenZernikepolynomialsandSeidelAberrations,Thefirst9Zernikepolynomialsareexpressedas:,ThesameaberrationcanbeexpressedinSeidelform:,.,Usingtheidentity:,.,.,1.8PeaktoValleyandRMSWavefrontAberration,PeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythewavefronterrorisconvenientandsimple,butitcanbemisleading.Ittellsnothingaboutthewholearea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年自建房屋購房合同示范文本
- 2025財(cái)產(chǎn)保險(xiǎn)代理合同模板參考:量身定制您的保險(xiǎn)代理協(xié)議
- 早產(chǎn)兒護(hù)理重點(diǎn)
- 2025年銻項(xiàng)目提案報(bào)告
- 2025年良性前列腺增生用藥項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2025簡易私人購房合同協(xié)議書
- 2025企業(yè)綜合采購合同審批表
- 2025年碳化鎢粉項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 橈骨骨折術(shù)后護(hù)理
- 2025企業(yè)借款合同書范本貸款協(xié)議借條
- 2025年北京市豐臺(tái)區(qū)九年級(jí)初三一模道德與法治試卷(含答案)
- 音樂樂理知識(shí)題庫
- 54個(gè)智慧兔送你一個(gè)字期末評(píng)語
- 2025年貴陽軌道交通三號(hào)線建設(shè)運(yùn)營有限公司招聘筆試參考題庫附帶答案詳解
- CNAS-CC153-2018 供應(yīng)鏈安全管理體系認(rèn)證機(jī)構(gòu)要求
- 2025年甘南藏族自治州小升初數(shù)學(xué)綜合練習(xí)卷含解析
- 產(chǎn)科安全不良事件課件
- Unit6NumbersinlifePartCReadingtime(課件)-人教PEP版(2024)英語三年級(jí)下冊(cè)
- 老舊小區(qū)加裝電梯施工合同范本
- 外周血管介入器械行業(yè)深度報(bào)告:集采正推進(jìn)國內(nèi)品牌大有可為
- 2025年春季中小學(xué)升旗儀式安排表(附:1-20周講話稿)
評(píng)論
0/150
提交評(píng)論