光學(xué)檢測(cè)CH01ppt課件_第1頁
光學(xué)檢測(cè)CH01ppt課件_第2頁
光學(xué)檢測(cè)CH01ppt課件_第3頁
光學(xué)檢測(cè)CH01ppt課件_第4頁
光學(xué)檢測(cè)CH01ppt課件_第5頁
已閱讀5頁,還剩72頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

.,1.0BasicWavefrontAberrationTheoryForOpticalMetrology,ChangchunInstituteofOpticsandFineMechanicsandPhysics,Dr.ZhangXuejun,.,ThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.,.,Formostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).,NotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasuredalongtheray.,.,1.1SignConvention,TheOPDispositiveiftheaberratedwavefrontleadstheidealwavefront.Inotherword,apositiveaberrationwillfocusinfrontoftheparaxial(Gaussian)imageplane.,RightHandedCoordinates:ZaxisisthelightpropagationdirectionXaxisisthemeridionalortangentialdirectionYaxisisthesagittaldirection,.,Thedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.,Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.,x=cosy=sin,.,1.2AberrationFreeSystem,Iftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.,.,DiametertothefirstzeroringiscalledthediameterofAiryDisk,:workingwavelengthF#:fnumberofthesystem,.,Finiteconjugate,NA:numericalApertureNA=nsinu,F#W:WorkingFnumber,Ruleofthumb:forvisiblelight,0.5m,DAiryF#inmicrons,.,x,y:coordinatesmeasuredintheexitpupilx0,y0:coordinatesmeasuredinthefocalplaneI0:intensityofincidentwavefront(constant):wavelengthofincidentwavefrontf:focallengthoftheopticalsystemA:amplitudeintheexitpupil(x,y):thephasetransmissionfunctionintheexitpupil,.,Foraberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.,.,Thefractionofthetotalenergycontainedinacircleofradiusraboutthediffractionpatterncenterisgivenby:,.,r,AngularResolution-RayleighCriterion,.,Generallyamirrorsystemwillhaveacentralobscuration.Ifeistheratioofthediameterofthecentralobscurationtothemirrordiameterd,andiftheentirecircularmirrorofdiameterdisuniformlyilluminated,thepowerperunitsolidangleisgivenby,.,.,isinlp/mm,TheCut-Offfrequencyofanopticalsystemis:,.,Features:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength,ObscuredSystem,UnobscuredSystem,Features:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly,.,1.3SphericalWavefront,DefocusandLateralShift,AperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:,Sagequation,.,Defocus,Originalwavefront:,Newwavefront:,Defocusterm,IncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamountz(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:,.,DepthofFocus,Ruleofthumb:forvisiblelight,0.5m,Z(F#)2inmicrons,ByuseofRayleighCriterion:,ThesmallertheF#,orthelargertherelativeaperture,thesmallertheDepthofFocus,sotheharderthealignment.,.,.,Lateral(Transverse)Shift,InsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:,Forthesamereason,ifmovealongYaxis,then:,.,Ageneralsphericalwavefront:,Thisequationrepresentsasphericalwavefrontwhosecenterofcurvatureislocatedatthepoint(X,Y,Z).,TheOPDis:,Thisthreetermsareadditiveforthemisalignment,someorallofthemshouldberemovedfromthetestresultfordifferenttestconfigurations.,.,1.4TransverseandLongitudinalAberration,Ingeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(x,y,z)asafunctionof(x,y).,.,WavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.,.,1.5SeidelAberrations,Inarealopticalsystem,theformofthewavefrontaberrationscanbeextremlycomplexduetotherandomerrorsindesign,fabricationandalignment.AccordingtoWelford,thiswavefrontaberrationcanbeexpressedasapowerseriesof(h,x,y):,a3termgivesrisetothephaseshiftoverthatisconstantacrosstheexitpupil.Itdoesntchangetheshapeofthewavefrontandhasnoeffectontheimage,usuallycalledPiston.b1tob5termshavefourthdegreeforh,x,ywhenexpressedaswavefrontaberrationorthirddegreeastransverseaberration,usuallycalledfourth-orderorthirdorderaberrations.,h:fieldcoordinatesx,y:coordinatesatexitpupil,.,.,Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.,.,WavefrontAberrationExpansion,.,ClassicalSeidelAberrations,.,Whatdoaberrationslooklike?,.,.,FieldCurvature,Wheredoaberrationscomefrom?,.,Distortion,.,Astigmatism,W222,.,.,Coma,W131,.,WarrenSmith,ModernOpticalEngineering,P65,SphericalAberration,W=W0404,.,+,W=W0404,W=W0202,W=-1W0202+W0404,SphericalAberration+Defocus,.,Through-focusDiffractionImage(WithSphericalAberration),.,Wavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.,Importanttoknow,.,Caustic,.,Specifiesthesizeofaberration,Basicformofaberration,Theaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.,1.6AberrationCoefficients,.,.,TheLagrangeInvariant,TheLagrangeInvariantholdsatanyplanebetweenobjectandimage.,=,Forobjectatinfinity:,.,ParaxialRayTracing,SnellsLaw,.,L=,SeidelCoefficientTable,.,SeidelCoefficientCalculationforaSinglelet,.,CalculationbyZemax,.,CalculationbySeidelCoefficientFormula,.,.,TheThinLensForm,Theaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.,.,.,TheStructureAberrationCoefficient,RolandV.Shack,.,TheThinLensBending,Itispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.,X:,Minimumsphericalaberration,IfYisconstant,then,Ifobjectatinfinity,Y=1,n=1.5,then,.,Minimumcoma,Ifobjectatinfinity,Y=1,n=1.5,then,Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:,.,ZemaxResult,CalculationUsingThinLensForm,.,Forobjectatinfinity:,=,Forthinlensisinair,n=1,rearrangethethinlensformula:,.,1.7ZernikePolynomials,Ofteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.,.,Zernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:,.,canbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinateandtheotherdependsonlyontheangularcoordinate.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesntchangetheformofthepolynomials:,.,canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:,Where:sinfunctionisusedforn-2m0cosfunctionisusedforn-2m0,.,SothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:,WhereAnmisthecoefficientofZerniketermUnm.,.,4thZernikepolynomials,.,Re-orderedZernikepolynomials(first36terms),.,1,2,3,5,4,6,7,8,PlotsofZernikepolynomials#1#8,.,9,10,11,12,13,14,15,PlotsofZernikepolynomials#9#15,.,PlotsofZernikepolynomials#16#24,16,17,18,19,20,21,22,23,24,.,33,PlotsofZernikepolynomials#25#36,25,26,28,27,29,30,32,31,35,34,.,Zernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.,AdvantagesofusingZernikepolynomials,.,CautionsofusingZernikepolynomials,Midorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfaceprofilecannotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.,.,RelationshipBetweenZernikepolynomialsandSeidelAberrations,Thefirst9Zernikepolynomialsareexpressedas:,ThesameaberrationcanbeexpressedinSeidelform:,.,Usingtheidentity:,.,.,1.8PeaktoValleyandRMSWavefrontAberration,PeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythewavefronterrorisconvenientandsimple,butitcanbemisleading.Ittellsnothingaboutthewholearea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論