衛(wèi)生統(tǒng)計學(xué)知識點總結(jié).doc_第1頁
衛(wèi)生統(tǒng)計學(xué)知識點總結(jié).doc_第2頁
衛(wèi)生統(tǒng)計學(xué)知識點總結(jié).doc_第3頁
衛(wèi)生統(tǒng)計學(xué)知識點總結(jié).doc_第4頁
衛(wèi)生統(tǒng)計學(xué)知識點總結(jié).doc_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

衛(wèi)生統(tǒng)計學(xué)統(tǒng)計工作基本步驟:統(tǒng)計設(shè)計(調(diào)查設(shè)計和實驗設(shè)計)、資料分析收集資料、整理資料、分析資料【統(tǒng)計描述和統(tǒng)計推斷(參數(shù)估計和假設(shè)檢驗)】。 統(tǒng)計推斷:是利用樣本所提供的信息來推斷總體特征,包括:參數(shù)估計和假設(shè)檢驗。a參數(shù)估計是指利用樣本信息來估計總體參數(shù),主要有點估計(把樣本統(tǒng)計量直接作為總體參數(shù)估計值)和區(qū)間估計【按預(yù)先設(shè)定的可信度(1-),來確定總體均數(shù)的所在范圍】。b假設(shè)檢驗:是以小概率反證法的邏輯推理來判斷總體參數(shù)間是否有質(zhì)的區(qū)別。變量資料可分為定性變量、定量變量。不同類型的變量可以進(jìn)行轉(zhuǎn)化,通常是由高級向低級轉(zhuǎn)化。資料按性質(zhì)可分為計量資料、計數(shù)資料和等級資料。定量資料的統(tǒng)計描述1頻率分布表和頻率分布圖是描述計量資料分布類型及分布特征的方法。離散型定量變量的頻率分布圖可用直條圖表達(dá)。2頻率分布表(圖)的用途:描述資料的分布類型;描述分布的集中趨勢和離散趨勢;便于發(fā)現(xiàn)一些特大和特小的可疑值;便于進(jìn)一步的統(tǒng)計分析和處理;當(dāng)樣本含量足夠大時,以頻率作為概率的估計值。3集中趨勢和離散趨勢是定量資料中總體分布的兩個重要指標(biāo)。(1)描述集中趨勢的統(tǒng)計指標(biāo):平均數(shù)(算術(shù)均數(shù)、幾何均數(shù)和中位數(shù))、百分位數(shù)(是一種位置參數(shù),用于確定醫(yī)學(xué)參考值范圍,P50就是中位數(shù))、眾數(shù)。算術(shù)均數(shù):適用于對稱分布資料,特別是正態(tài)分布資料或近似正態(tài)分布資料;幾何均數(shù):對數(shù)正態(tài)分布資料(頻率圖一般呈正偏峰分布)、等比數(shù)列;中位數(shù):適用于各種分布的資料,特別是偏峰分布資料,也可用于分布末端無確定值得資料。(2)描述離散趨勢的指標(biāo):極差、四分位數(shù)間距、方差、標(biāo)準(zhǔn)差和變異系數(shù)。四分位數(shù)間距:適用于各種分布的資料,特別是偏峰分布資料,常把中位數(shù)和四分位數(shù)間距結(jié)合起來描述資料的集中趨勢和離散趨勢。方差和標(biāo)準(zhǔn)差:都適用于對稱分布資料,特別對正態(tài)分布資料或近似正態(tài)分布資料,常把均數(shù)和標(biāo)準(zhǔn)差結(jié)合起來描述資料的集中趨勢和離散趨勢;變異系數(shù):主要用于量綱不同時,或均數(shù)相差較大時變量間變異程度的比較。標(biāo)準(zhǔn)差的應(yīng)用:表示變量分布的離散程度;結(jié)合均數(shù)計算變異系數(shù)、描述對稱分布資料;結(jié)合樣本含量計算標(biāo)準(zhǔn)誤。定性資料的統(tǒng)計描述1定性資料的基礎(chǔ)數(shù)據(jù)是絕對數(shù)。描述一組定性資料的數(shù)據(jù)特征,通常需要計算相對數(shù)。定性變量可以通過頻率分布表描述其分布特征。2常用相對數(shù)類型:頻率型、強度型和相對比型指標(biāo)。指標(biāo)頻率型指標(biāo)強度型指標(biāo)相對比型指標(biāo)概念近似反映某一時間出現(xiàn)概率單位時間內(nèi)某現(xiàn)象的發(fā)生頻率兩個有關(guān)聯(lián)的指標(biāo)A和B之比計算公式A/B有無量綱無有可有、可無取值范圍【0,1】可大于1無限制本質(zhì)大樣本時作為概率近似值分子式分母的一部分頻率強度,即概率強度的近似值表示相對于B的一個單位,A有多少個單位A和B可以是絕對數(shù)、相對數(shù)和平均數(shù)A和B的量綱可相同也可不同A和B互不包含相對比:A、B兩指標(biāo)可以是絕對數(shù)、相對數(shù)或平均數(shù)。最常見的相對比是人口學(xué)中的男女性別比,流行病學(xué)中的相對危險度RR=P1/P0也是相對比指標(biāo)。3應(yīng)用相對數(shù)應(yīng)該注意:防止概念混淆,避免以比代率的錯誤現(xiàn)象;計算相對數(shù)時分母應(yīng)有足夠數(shù)量,如果例數(shù)較少會使相對數(shù)波動較大,應(yīng)該使用絕對數(shù);正確的計算頻率(或強度)指標(biāo)的合計值。當(dāng)分組的資料需要合并起來估計頻率(或強度)時,應(yīng)將各組頻率的分子相加作為合并估計的分子,各組的分母相加作為合并估計的分母;頻率型指標(biāo)的解釋要緊扣總體和屬性;相對數(shù)間比較要具備可比性:要注意觀察對象是否同質(zhì)、研究方法是否相同、觀察時間是否一致、觀察對象內(nèi)部結(jié)構(gòu)是否一致、對比不同時期資料應(yīng)注意客觀條件是否相同;正確進(jìn)行相對數(shù)的統(tǒng)計推斷:在隨機抽樣的情況下,從樣本估計值推斷總體相對數(shù)應(yīng)該考慮抽樣誤差,因此要進(jìn)行參數(shù)估計和假設(shè)檢驗。4醫(yī)學(xué)人口統(tǒng)計資料主要來源為日常工作記錄(報告單、卡、冊)、統(tǒng)計報表、人口調(diào)查(普查和抽樣調(diào)查)。5描述人口學(xué)特征的常用指標(biāo)一般有人口總數(shù)和反映人口學(xué)基本特征的某些指標(biāo)。人口學(xué)的基本特征包括性別、年齡、文化、職業(yè)等,最常用來描述人口結(jié)構(gòu)的是性別和年齡。人口學(xué)特征指標(biāo):老年人口系數(shù)、少兒人口系數(shù)、負(fù)擔(dān)系數(shù)、老少比、性別比。6有關(guān)生育的常用指標(biāo)有出生率、生育率和人口再生產(chǎn)指標(biāo)。測量生育水平的統(tǒng)計指標(biāo):粗出生率、總生育率、年齡別生育率、總和生育率。測量人口再生育的統(tǒng)計指標(biāo):自然增長率、粗再生率和凈再生率。7常用的死亡統(tǒng)計指標(biāo)有:粗死亡率、年齡別死亡率、嬰兒死亡率、新生兒死亡率、圍生兒死亡率、死因別死亡率、某病病死率和死因構(gòu)成等。8疾病統(tǒng)計資料主要來源于:疾病報告和報表材料、醫(yī)療衛(wèi)生工作記錄、疾病專題調(diào)查資料。9標(biāo)準(zhǔn)化:兩個率或多個率之間進(jìn)行比較時,為消除內(nèi)部構(gòu)成不同的影響,采用統(tǒng)一的標(biāo)準(zhǔn),對兩組或多組資料進(jìn)行校正(調(diào)整),計算得到標(biāo)準(zhǔn)化率后再做比較的方法,稱為。其目的是統(tǒng)一內(nèi)部構(gòu)成,消除混雜因素,是資料具有可比性。應(yīng)用標(biāo)準(zhǔn)化法的注意事項: 標(biāo)準(zhǔn)化法的應(yīng)用范圍很廣。當(dāng)某個分類變量在兩組中分布不同時,這兩個分類變量就成為兩組頻率比較的混雜因素,標(biāo)準(zhǔn)化的目的是消除混雜因素。 標(biāo)準(zhǔn)化后的標(biāo)準(zhǔn)化率,已經(jīng)不再反映當(dāng)時當(dāng)?shù)氐膶嶋H水平,只表示相互比較的資料間的相對水平。 標(biāo)準(zhǔn)化法實質(zhì)是找一個標(biāo)準(zhǔn),使兩組得意在一個共同的平臺上進(jìn)行比較。選擇不同的標(biāo)準(zhǔn),算出的標(biāo)準(zhǔn)化率也會不同,比較的結(jié)果也未必相同,因此報告比較結(jié)果時必須說明所選用的標(biāo)準(zhǔn)和理由兩樣本標(biāo)準(zhǔn)化率是樣本值,存在抽樣誤差。比較兩樣本標(biāo)準(zhǔn)化率,當(dāng)樣本含量較小時,還應(yīng)作假設(shè)檢驗。10常用的動態(tài)數(shù)列分析指標(biāo)有:絕對增長量、發(fā)展速度與增長速度、平均發(fā)展速度與平均增長速度。(1)絕對增長量:是說明事物在一定時期增長的絕對值,可分為:累計增長量(報告期指標(biāo)與基線期指標(biāo)之差)和逐年增長量(報告期指標(biāo)與前一期指標(biāo)之差)。(2)發(fā)展速度與增長速度:均為相對比,說明事物在一定時期的變化,可計算定基比(即報告期指標(biāo)與基線期指標(biāo)的比:an/a0)和環(huán)比(報告期指標(biāo)與其前一期指標(biāo)之比:an/an-1)。增長速度表示的是凈增長速度,增長速度=發(fā)展速度-100。(3)平均發(fā)展速度與平均增長速度:用于概括某現(xiàn)象在一段時期中的平均變化。平均發(fā)展速度是發(fā)展速度的幾何平均數(shù),平均發(fā)展速度=,平均增長速度=平均發(fā)展速度-100。11統(tǒng)計表和統(tǒng)計圖是描述資料特征、呈現(xiàn)統(tǒng)計分析結(jié)果的重要工具。統(tǒng)計表結(jié)構(gòu)標(biāo)題、標(biāo)目、線條、數(shù)字和備注。12常用統(tǒng)計圖用途:條圖:適用于相互獨立的資料(資料有明確分組、不連續(xù));百分條圖、圓圖適用于構(gòu)成比資料;線圖適用于連續(xù)性資料,表達(dá)事物的動態(tài)變化(絕對差值);半對數(shù)線圖適用于連續(xù)性資料,表達(dá)事物的發(fā)展速度(相對比);直方圖用于描述連續(xù)變量的頻數(shù)分布;散點圖適用于雙變量資料,用點的排列趨勢和密集度表示兩變量的相關(guān)關(guān)系。常用概率分布1正態(tài)分布(連續(xù)型隨機變量的概率分布)(1)正態(tài)概率密度曲線特點:關(guān)于x=對稱;在x=處取得該概率密度函數(shù)的最大值,在x=處有拐點;曲線下面積為1;正態(tài)分布有兩個參數(shù):位置參數(shù)(決定曲線在橫軸上的位置)和變異參數(shù)(決定曲線的形狀);1.64面積為90,1.96面積為95,2.58面積為99。(2)Z變換與標(biāo)準(zhǔn)正態(tài)分布:對于任意一個服從正態(tài)分布N(,2)的隨機變量,可作Z變:Z=,變換后的z值仍然服從正態(tài)分布,且其總體均數(shù)為0、總體標(biāo)準(zhǔn)差為1,稱此為標(biāo)準(zhǔn)正態(tài)分布,用N(0,1)表示。(z)為標(biāo)準(zhǔn)正態(tài)分布Z變量的累積面積,-Z的面積,即下側(cè)累計面積。(3)正態(tài)分布的應(yīng)用:確定醫(yī)學(xué)參考值范圍:是指特定的“正?!比巳海ㄅ懦藢λ芯康闹笜?biāo)有影響的的疾病和有關(guān)因素的特定人群)的解剖、生理、生化指標(biāo)及組織代謝產(chǎn)物含量等數(shù)據(jù)中大多數(shù)個體的取值所在范圍,習(xí)慣用該人群的95的個體某項醫(yī)學(xué)指標(biāo)的取值范圍作為該指標(biāo)的醫(yī)學(xué)參考值范圍。方法:a百分位數(shù)法:適用于任何分布類型的資料;b正態(tài)分布法。質(zhì)量控制圖:如果某一波動僅僅由個體差異或隨機測量誤差所致,那么觀察結(jié)果服從正態(tài)分布??刂茍D共有7條水平線,中心線位于總體均數(shù)處,警戒限位于2處,控制限位于3處,此外還有兩條位于處。(4)確定醫(yī)學(xué)參考值的步驟:從“正常人”總體中抽樣,明確研究總體;用統(tǒng)一和準(zhǔn)確的方法測定相應(yīng)的指標(biāo);根據(jù)不同的用途選定適當(dāng)?shù)陌俜纸缦?,常?5;根據(jù)此指標(biāo)的實際意義,決定單側(cè)范圍還是雙側(cè)范圍;根據(jù)此指標(biāo)的分布決定計算方法,常用的計算方法:正態(tài)分布法、百分位數(shù)法。2二項分布: (1)是一種離散型隨機變量的分布類型。如果每個觀察對象陽性結(jié)果的發(fā)生概率為,陰性結(jié)果的發(fā)生概率為(1-);而且每個觀察對象的結(jié)果是相互對立的,那么,重復(fù)觀察n個人,發(fā)生陽性結(jié)果的人數(shù)X的概率分布為而二項分布,記作B(n,)。二項分布的概率函數(shù)P(X)=(1-)n-x, =適用條件:每次實驗只有兩種互斥的結(jié)果;各次實驗互相獨立;發(fā)生成功事件的概率恒定。分布特征:二項分布的特征由二項分布的參數(shù)以及觀察的次數(shù)n決定。圖形分布特征:二項分布圖的高峰在=n處或附近;=0.5時,圖形對稱;0.5時,分布不對稱,且對同一n,離0.5愈遠(yuǎn),對稱性愈差。對于同一,隨著n的增大,分布趨于對稱。當(dāng)n時,只要不太靠近0或1(特別是當(dāng)n和n(1-)均大于5時),二項分布趨于對稱。二項分布的均數(shù)和標(biāo)準(zhǔn)差:若X服從二項分布B(n,),則X的總體均數(shù)為=n,總體方差為2=n(1-),總體標(biāo)準(zhǔn)差為=;若將出現(xiàn)陽性結(jié)果的頻率記為:P=,則樣本率P的總體均數(shù)為P=,總體方差為 =,總體標(biāo)準(zhǔn)差為p=,p是頻率P的標(biāo)準(zhǔn)差,又稱頻率的標(biāo)準(zhǔn)誤,反映陽性頻率的抽樣誤差大小。累積概率計算:二項分布出現(xiàn)陽性的次數(shù)至多為k次的概率為:P(Xk)=出現(xiàn)陽性的次數(shù)至少為k次的概率為:P(Xk)=。3 Poisson分布:是一種離散型隨機變量的分布類型,是二項分布的特例,用以描述單位時間、空間、面積等的罕見事件發(fā)生次數(shù)的概率分布。一般記作P(),是Poisson分布的唯一參數(shù)??傮w均數(shù)為=n。前提條件:互斥、獨立、恒定。概率函數(shù)為:P(X)=e-,X為觀察單位內(nèi)稀有事件的發(fā)生次數(shù),e=2.71828。分布特性:Poisson分布是非對稱的,總體參數(shù)值越小,分布越偏;隨著,分布趨于對稱,當(dāng)20時,Poisson分布資料可按正態(tài)分布處理。Poisson分布總體均數(shù)與總體方差相等,均為;Poisson分布的觀察結(jié)果可加性,即對于服從Poisson分布的m歌互相獨立的隨機變量X1、X2Xm,它們的和也服從Poisson分布,其均數(shù)為這個m隨機變量的均數(shù)之和。4 概率計算:如果稀有事件發(fā)生次數(shù)的總體均數(shù)為,有事件發(fā)生次數(shù)至多為k次的概率為:P(Xk)= ;生次數(shù)至少為k次的概率:P(Xk)=1-P(Xk-1)4三種常用分布之間的關(guān)系:二項分布與Poisson分布的關(guān)系:當(dāng)n很大,發(fā)生概率(或1-)很小,二項分布B(n,)近似于Poisson分布P(n);二項分布與正態(tài)分布的關(guān)系:當(dāng)n較大,不接近0或1(特別是當(dāng)n和n(1-)均大于5時),二項分布B(n,)近似于正態(tài)分布N(n,n(1-); Poisson分布與正態(tài)分布的關(guān)系:當(dāng)20時,Poisson分布漸進(jìn)正態(tài)分布N(,)。5二項分布與Poisson分布的區(qū)別:相同點:都是離散型隨機變量的常見分布;區(qū)別:a取值不同。服從二項分布的隨機變量有n+1個不同的取值;Poisson分布的隨機變量的可能去只有無限多個,即非負(fù)整數(shù)0,1,2;b隨機變量的概率不同:二項分布P(X=k)=,Poisson分布P(X=k)=e-;c描述的隨機變量不同。二項分布描述的是一次試驗只會出現(xiàn)兩種對立的結(jié)果之一,n次獨立重復(fù)試驗中某種結(jié)果出現(xiàn)次數(shù)的概率分布。Poisson分布描述的是在單位時間、面積、空間等范圍中某種事件發(fā)生數(shù)的概率分布。聯(lián)系:B(n,)Poisson分布。參數(shù)估計1在服從正態(tài)分布的總體中進(jìn)行隨機抽樣,樣本均數(shù)的抽樣分布特點:各樣本均數(shù)未必等于總體均數(shù);樣本均數(shù)見存在差異;樣本均數(shù)圍繞總體均數(shù),中間多、兩邊少,左右基本對稱,呈近似正態(tài)分布;樣本均數(shù)間的變異明顯小于原始變量間的變異。2標(biāo)準(zhǔn)誤:均數(shù)的標(biāo)準(zhǔn)誤的理論值:=,總體標(biāo)準(zhǔn)差通常未知,需用樣本標(biāo)準(zhǔn)差S來估計,均數(shù)標(biāo)準(zhǔn)誤的估計值為:S=;頻率的標(biāo)準(zhǔn)誤:若隨機變量XB(n,),則樣本頻率 P=的總體概率為,標(biāo)準(zhǔn)誤是p=,頻率標(biāo)準(zhǔn)誤的估計值:SP=(增加樣本含量可以減少樣本誤差)。3標(biāo)準(zhǔn)差與標(biāo)準(zhǔn)誤的區(qū)別與聯(lián)系: 區(qū)別:標(biāo)準(zhǔn)差S():意義:描述個體觀察值變異程度的大小。標(biāo)準(zhǔn)差小,均數(shù)對一組觀察值得代表性好;應(yīng)用:與結(jié)合,用以描述個體觀察值的分布范圍,常用于醫(yī)學(xué)參考值范圍的估計;與n的關(guān)系:n越大,S越趨于穩(wěn)定;標(biāo)準(zhǔn)誤S():意義:描述樣本均數(shù)變異程度及抽樣誤差的大小。標(biāo)準(zhǔn)誤小,用樣本均數(shù)推斷總體均數(shù)的可靠性大;應(yīng)用于結(jié)合,用以估計總體均數(shù)可能出現(xiàn)的范圍以及對總體均數(shù)作假設(shè)檢驗;與n的關(guān)系:n越大,S越小。聯(lián)系:都是描述變異程度的指標(biāo);由S=可知,S與S成正比。n一定時,s越大,S越大。4 t分布:當(dāng)X服從均數(shù)為的正態(tài)分布時,統(tǒng)計量服從自由度為v=n-1的t分布,是小樣本總體均數(shù)的區(qū)間估計及假設(shè)檢驗的理論基礎(chǔ)。t分布的圖形特征:t值得分布于自由度有關(guān)。t分布只有一個參數(shù)即v。特征:單峰分布,以0為中心,左右對稱;v越小,t值越分散,曲線的峰部越矮,尾部越高;隨著v逐漸增大,t分布逐漸接近標(biāo)準(zhǔn)正態(tài)分布;當(dāng)v趨向時,t分布趨近標(biāo)準(zhǔn)正態(tài)分布,故標(biāo)準(zhǔn)正態(tài)分布是t分布的特例;t分布是一簇曲線。t界值表:在自由度相同時,值越大,t分布的尾部概率越?。辉趖臨界值相同時,雙側(cè)尾部面積概率為單側(cè)尾部面積概率的兩倍。5參數(shù)估計:包括點估計和區(qū)間估計。置信區(qū)間的兩個要素:準(zhǔn)確度:反映置信度1-的大小,及區(qū)間包括總體均數(shù)的理論概率的大小,愈接近1越好;精密度:即區(qū)間的寬度,區(qū)間越窄越好,如樣本含量不變,將置信度由95提高到99,則置信區(qū)間由窄變寬,估計的精度下降。6總體均數(shù)及總體概率的區(qū)間估計:1 體均數(shù)的置信區(qū)間:t分布法和正態(tài)近似法I.t分布法:當(dāng)未知且n較小時,總體均數(shù)的雙側(cè)(1-)置信區(qū)間為tS;單側(cè)(-tS,)或(-,+ tS);II正態(tài)近似法:當(dāng)已知時,總體均數(shù)的雙側(cè)(1-)置信區(qū)間為Z;單側(cè)(-Z,)或(-,+ Z);當(dāng)未知但n足夠大時(n50),t分布近似服從標(biāo)準(zhǔn)正態(tài)分布,總體均數(shù)的雙側(cè)(1-)置信區(qū)間為:ZS,單側(cè)(- Z S,)或(-,+ Z S)總體概率的置信區(qū)間:對于二項分布的樣本資料,可根據(jù)樣本含量n和樣本頻率p的大小,選用查表法(n50,特別是p很接近0或100時)或正態(tài)近似法估計總體概率的(1-)置信區(qū)間。正態(tài)近似法:當(dāng)n足夠大,且np及n(1-p)均大于5時,p的抽樣分布近似正態(tài)分布,總體概率的雙側(cè)(1-)置信區(qū)間等于PZSp7醫(yī)學(xué)參考值范圍與總體均數(shù)的置信區(qū)間的區(qū)別:參考值范圍意義:絕大多數(shù)人某項指標(biāo)的數(shù)值范圍;計算:正態(tài)分布 雙側(cè)ZS;單側(cè)(- ZS,)或(-,+ ZS)偏峰分布 雙側(cè)PXP100-X;單側(cè)(PX,)或(-,P100-X)應(yīng)用:判斷某項指標(biāo)正常與否總體均數(shù)的置信區(qū)間:意義:按一定的置信度估計總體均數(shù)所在范圍;計算:正態(tài)分布 未知:雙側(cè)tS,單側(cè)(-tS,)或(-,+ tS); 已知:雙側(cè)Z,單側(cè)(-Z,)或(-,+ Z); 正態(tài)分布或偏峰分布:未知但n足夠大:雙側(cè)ZS,單側(cè)(- Z S,)或(-,+ Z S)應(yīng)用:估計總體均數(shù)所在范圍。假設(shè)檢驗1假設(shè)檢驗的過程:建立檢驗假設(shè),確定檢驗水準(zhǔn)計算統(tǒng)計量確定P值并與給定的比較做出推斷結(jié)論。2假設(shè)檢驗的基本邏輯:在H0成立的條件下(處理因素不起作用),計算統(tǒng)計量和P值,把“不太可能出現(xiàn)假陽性”當(dāng)作“不可能出現(xiàn)假陽性”,從而拒絕H0,接受H1(處理因素起作用)。3假設(shè)檢驗的兩類錯誤:型和型錯誤。(見名解)實際情況 統(tǒng)計推斷 拒絕H0,有差異 不拒絕H0 ,無差異H0成立,無差異 第類錯誤(假陽性),概率= 正確,概率=1- H1成立,有差異 正確,該概率=1- 第類錯誤(假陰性),概率= 4t檢驗:應(yīng)用條件:隨機樣本:來自正態(tài)分布總體;均數(shù)比較時,要求兩總體方差相等(方差齊性)。單樣本資料的t檢驗:實際上是推斷該樣本來自的總體均數(shù)與已知的某一總體均數(shù)0有無差別。檢驗假設(shè):H0:=0,H1:0;前提條件:樣本來自正態(tài)總體;計算公式:;自由v=n-1。配對設(shè)計資料的t檢驗:配對資料的分析著眼與每一對中兩個觀察值之差,這些差值構(gòu)成一組資料,用t檢驗推斷差值總體均數(shù)是否為0。檢驗假設(shè):H0:d=0,H1:d0;前提條件:差值服從正態(tài)分布;計算公式; 自由度v=n-1(n是對子數(shù))。兩獨立樣本資料的t檢驗:兩樣本均數(shù)的比較。檢驗假設(shè):H0:=,H1:;前提條件:兩樣本服從正態(tài)分布,且具有方差齊性;計算公式:,代表兩樣本均數(shù)之差的標(biāo)準(zhǔn)誤, S為兩樣本聯(lián)合估計的方差,;自由度。5 檢驗:前提條件:兩小樣本來自正態(tài)總體且方差不等。方差不齊,可采用的處理方式有:檢驗,基于秩次的非參數(shù)檢驗和數(shù)據(jù)變換。非正態(tài)分布,方差不齊:基于秩次的非參數(shù)檢驗和數(shù)據(jù)變換。檢驗假設(shè):H0:=,H1:;計算公式:;自由度6兩組獨立樣本資料的方差齊性檢驗:兩組正態(tài)分布隨機樣本判斷其總體方差是否齊同:,當(dāng)H0成立時,檢驗統(tǒng)計量,當(dāng)F3時,方差不齊。7大樣本資料的Z檢驗(u檢驗):前提條件:樣本足夠大;兩獨立樣本資料的Z檢驗:假定從兩個正態(tài)總體(或非正態(tài))總體隨機抽取含量為n1和n2的樣本,總體均數(shù)和方差分別為。當(dāng)n1和n2均較大時,兩樣本均數(shù)的和與差的分布也服從(或近似服從)正態(tài)分布,。當(dāng)H0成立時,這個統(tǒng)計量服從標(biāo)準(zhǔn)正態(tài)分布。t檢驗與Z檢驗的比較:兩樣本均數(shù)比較的t檢驗適用條件為:樣本含量小,兩樣本獨立,來自正態(tài)總體,且兩總體方差相等。Z檢驗是大樣本情況下的t檢驗的近似,用于兩總體方差已知,或總體方差未知但樣本含量較大(n160且n260)的兩樣本均數(shù)的比較。樣本量較大時,兩種檢驗方法都可用。 8假設(shè)檢驗與區(qū)間估計的關(guān)系:置信區(qū)間具有假設(shè)檢驗的主要功能:在水準(zhǔn)上可回答差別有無統(tǒng)計學(xué)意義;置信區(qū)間可提供假設(shè)檢驗沒有提供的信息:根據(jù)置信區(qū)間上、下限的數(shù)值大小可判斷差別是否具有實際意義;假設(shè)檢驗可提供確切的P值,置信區(qū)間只能在預(yù)先確定的置信度100(1-)水平上進(jìn)行推斷,沒有精確的概率值,且有可能增大類錯誤;置信區(qū)間推斷量的大小,即推斷總體均數(shù)范圍;假設(shè)檢驗推斷質(zhì)的大小即推斷總體均數(shù)是否存在不同。只有把置信區(qū)間和假設(shè)檢驗結(jié)合起來,互相補充才是對問題比較的完整分析。9假設(shè)檢驗的注意事項:根據(jù)研究目的、設(shè)計類型、變量類型及樣本大小選擇恰當(dāng)?shù)慕y(tǒng)計分析方法;權(quán)衡兩類錯誤的危害以確定的大??;正確理解P值的意義:P值很小時“拒絕H0,接受H1”,不能把很小的P值誤解為總體參數(shù)間差異很大。拒絕H0只是說差異不為0,P值小只是說犯一類錯誤的機會遠(yuǎn)小于。P與本質(zhì)相同,都為概率,P是根據(jù)當(dāng)前實驗計算的概率,是預(yù)先給定的概率,為檢驗水準(zhǔn),是定義了的小概率上限。實驗設(shè)計1根據(jù)研究者是否認(rèn)為地設(shè)置處理因素,即是否給予干預(yù)措施,可將醫(yī)學(xué)研究分為調(diào)查研究和實驗研究兩類。 調(diào)查研究:又稱觀察性研究或非實驗性研究,確切的說應(yīng)是非隨機化對比研究。它對研究對象不施加任何干預(yù)措施,是在完全“自然狀態(tài)”下對研究對象的特征進(jìn)行觀察、記錄,并對觀察結(jié)果進(jìn)行描述和對比研究。 實驗研究:又稱干預(yù)性研究,是對研究對象人為給予干預(yù)措施的研究。2實驗設(shè)計的基本要素:受試對象、處理因素、實驗效應(yīng)。 受試對象:是處理因素作用的客體,根據(jù)受試對象不同,實驗可以分為三類:動物實驗、臨床試驗、現(xiàn)場試驗。 處理因素:是研究者根據(jù)研究目的而施加的特定的實驗措施,又稱為受試因素。 實驗效應(yīng):是處理因素作用下,受試對象的反應(yīng)或結(jié)局,它通過觀察指標(biāo)來體現(xiàn)。選擇觀察指標(biāo)時,應(yīng)當(dāng)注意:a客觀性:客觀指標(biāo)具有較好的真實性和可靠性;b精確性:包括準(zhǔn)確度和精密度兩層含義。準(zhǔn)確度指觀察值與真值的接近程度,主要受系統(tǒng)誤差的影響。精密度指相同條件下對同一對象的同一指標(biāo)進(jìn)行重復(fù)觀察時,觀察值與其均數(shù)的接近程度,其差值受隨機誤差的影響。c靈敏性和特異性:指標(biāo)的靈敏度反映其檢出真陽性的能力,靈敏度高的指標(biāo)能將處理因素的效應(yīng)更好地顯示出來;指標(biāo)的特異度反映其鑒別真陰性的能力,特異度高的指標(biāo)不易受混雜因素的干擾。3實驗設(shè)計的基本原則:對照、隨機化和重復(fù)。對照的形式:安慰劑對照:目的:在于克服研究者、受試對象等由心理因素導(dǎo)致的偏倚。空白對照:即對照組不接受任何處理,在動物實驗和實驗方法研究中最常見,常用于評價測量方法的準(zhǔn)確度,評價實驗是否處于正常狀態(tài)等。實驗對照;標(biāo)準(zhǔn)對照:用現(xiàn)有標(biāo)準(zhǔn)方法或常規(guī)方法作為對照;自身對照:對照與實驗在同一受試對象身上進(jìn)行。a隨機化體現(xiàn)在三方面:隨機抽樣:總體中每一個體都有相同機會被抽到樣本中來;隨機分配:每個受試對象被分配到各組的機會相等,保證大量難以控制的非處理因素在對比組間盡可能均衡,以提高組間的可比性;實驗順序隨機:每個受試對象先后接受處理的機會相等,它使實驗順序的影響也達(dá)到均衡。b在實驗設(shè)計中常通過隨機數(shù)來實現(xiàn)隨機化。獲得隨機數(shù)的常用方法有:隨機數(shù)字表和計算機的偽隨機數(shù)發(fā)生器。隨機數(shù)字表常用于抽樣研究及隨機分組。c常用的兩種隨機化分組的方法:完全隨機化和分層隨機化(配對隨機化和區(qū)組隨機化可看成是分層隨機化的實際應(yīng)用)。重復(fù)包括三種情形:整個實驗的重復(fù);用多個受試對象進(jìn)行重復(fù);同一受試對象的重復(fù)觀察。重復(fù)的主要作用:估計變異的大小;降低變異大小。4常用的實驗設(shè)計方案:完全隨機設(shè)計(completely randomized design):又稱簡單隨機設(shè)計,是最為常見的一種考察單因素兩水平或多水平效應(yīng)的實驗設(shè)計的方法,它是采用完全隨機分組的方法將同質(zhì)的受試對象分配到各處理組,觀察其實驗效應(yīng)。配對設(shè)計(paired design):是將受試對象按一定條件配成對子,再將每對中的兩個受試對象隨機分配到不同的處理組。據(jù)以配對的因素應(yīng)為可能影響實驗結(jié)果的主要混雜因素。配對設(shè)計主要有以下情形:將兩個條件相同或相近的受試對象配成對子,通過隨機化,使對子內(nèi)個體分別接受兩種不同的處理;同一受試對象的兩個部分配成對子,分別速記地接受兩種不同的處理;自身前后配對,即同一受試對象,接受某種處理之前和接受該處理后視為配對。交叉設(shè)計(cross-over design):是一種特殊的自身對照設(shè)計,它按事先設(shè)計好的實驗次序,在各個時期對受試對象先后實施各種處理,以比較處理組間的差異?;厩疤幔簜€處理方式不能相互影響,即受試對象在接受第二種處理時,不能有前一種處理的剩余效應(yīng)。優(yōu)點:節(jié)約樣本含量;能夠控制個體差異和時間對處理因素的影響,故效率較高;在臨床試驗中,每個受試對象均接受了各種處理,均等的考慮了每個患者的利益。進(jìn)行交叉設(shè)計應(yīng)注意:盡可能采用盲法,以提高受試對象的依從性,避免偏倚;不宜用于具有自愈傾向或病程較短的疾病研究。在慢性病觀察過程中,應(yīng)盡量保持條件的可比性。隨機區(qū)組設(shè)計:又稱單位設(shè)計、配伍組設(shè)計,實際上是配對設(shè)計的擴展。通常是將受試對象按性質(zhì)相同或相近分為b個區(qū)組(或稱單位組、配伍組),再將每個區(qū)組中的k個受試對象隨機分配到k個處理組。設(shè)計應(yīng)遵循“區(qū)組間差別越大越好,區(qū)組內(nèi)差別越小越好”的原則。析因設(shè)計(factorial design):a是將兩個或多個處理因素的個水平進(jìn)行組合,對各種可能的組合都進(jìn)行實驗,從而探討個處理因素的主效應(yīng)以及個處理因素間的交互效應(yīng),又稱完全交叉分組實驗設(shè)計。所謂交互作用是指兩個或多個處理因素間的效應(yīng)互不獨立,當(dāng)某一因素取不同水平時,另一個或多個因素的效應(yīng)相應(yīng)的發(fā)生變化。兩因素間的交互作用為一階交互作用,三因素間交互作用為二階交互作用。b當(dāng)觀察k個處理因素,每個因素均有m個水平時,共有mk種組合,簡記為mk析因設(shè)計。c可獲得三方面的信息:各因素不同水平的效應(yīng);各因素間的交互作用;通過比較尋求最佳組合。5樣本含量的估算:確定樣本含量的原則:在保證研究結(jié)論有一定可靠性的前提下,估算最少需要多少受試對象。假設(shè)檢驗所需樣本含量取決于四個要素: 第一類錯誤概率的大?。涸叫?,所需樣本量越大;第二類錯誤概率或檢驗功效(1-)的大?。旱诙愬e誤的概率越小,檢驗功效越大,所需樣本含量越多;容許誤差:即兩總體參數(shù)的的差值,越大,所需樣本含量越小;總體標(biāo)準(zhǔn)差和總體概率:越大,所需樣本含量越多;總體概率越接近50,變異性越大,所需樣本含量越多。方差分析1基本思想:把全部觀察值間的變異按設(shè)計和需要分解成兩個或多個組成部分,然后將各部分的變異與隨機誤差進(jìn)行比較,以判斷各部分的變異是否具有統(tǒng)計學(xué)意義。2應(yīng)用條件:各樣本是相互獨立的隨機樣本;各樣本來自正態(tài)總體;各處理組總體方差相等,即方差齊性。3任何設(shè)計方案的SS總和v總算法均相同,即在不考慮數(shù)據(jù)按任何方向分組的情況下,將所有數(shù)據(jù)看成一個整體計算,即SS=(N-1)S2,v =N-1。幾種設(shè)計方案中SS和v的分解:設(shè)計方案 SS的分解 v 完全隨機設(shè)計 SS=SS組間+SS組內(nèi) v=v組間+v組內(nèi)隨機區(qū)組設(shè)計 SS=SS處理+SS區(qū)組+SS誤差 v=v處理+v區(qū)組+v誤差析因設(shè)計 SS= SS處理+ SS誤差 v=v處理+ v誤差 =(SSA+SSB+SSAB)+SS誤差 =(vA+vB+vAB)+ v誤差重復(fù)測量設(shè)計(兩因素) SS=SS受試對象間+SS受試對象內(nèi) v= v受試對象間+v受試對象內(nèi) =(SS處理+SS個體間誤差)+ =(v處理+v個體間誤差)+(SS時間+SS處理與時間交互+SS個體內(nèi)誤差) (v時間+v處理與時間交互+v個體內(nèi)誤差)4重復(fù)測量資料和隨機區(qū)組設(shè)計資料的區(qū)別:同一受試對象在不同時間點的數(shù)據(jù)高度相關(guān);重復(fù)測量資料中的處理因素在受試對象(看成區(qū)組)間為隨機分配,但受試對象(看成區(qū)組)內(nèi)的各時間點是固定的,不能隨機分配。隨機區(qū)組設(shè)計資料中每個區(qū)組內(nèi)的受試對象彼此獨立,處理只在區(qū)組內(nèi)隨機分配,同一區(qū)組內(nèi)的受試對象接受的處理各不相同。5重復(fù)測量資料方差分析的前提條件:各樣本是相互獨立的隨機樣本;各樣本來自正態(tài)總體;各處理組總體方差相等,即方差齊性;需滿足協(xié)方差陣的球形性或復(fù)合對稱性。6多各樣本均數(shù)的兩兩比較方法:未計劃的每兩個均數(shù)的事后比較,常用SNK-q檢驗;計劃好的某些均數(shù)間的兩兩比較,常用Dunnett-t檢驗;Bonferroni法和sidak法適用于所有的兩兩比較。方差分析后不能作兩兩比較的t檢驗的原因:會增加犯一類錯誤的概率。如果比較次數(shù)為k,每次檢驗水準(zhǔn)為,則犯一類錯誤的累積概率為1-(1-)k,高于原有的。7數(shù)據(jù)變換的目的:使各組達(dá)到方差齊性;使資料轉(zhuǎn)換為正態(tài)分布,以滿足方差分析和t檢驗的應(yīng)用條件。通常情況下,一種適當(dāng)?shù)暮瘮?shù)轉(zhuǎn)換可使上述兩個目的同時達(dá)到。曲線直線化。常用于曲線擬合。常用的數(shù)據(jù)變換有對數(shù)變換、平方根變換、平方根反正弦變換。8方差分析中的F檢驗是單側(cè)檢驗的原因:方差分析中檢驗統(tǒng)計量F的計算通常是用某部分的均方(如處理因素、交互效應(yīng)等)除以誤差的均方,其中分母誤差部分盡含隨機因素作用,分子某部分的均方含有相應(yīng)處理因素或交互作用的效應(yīng),而且還含有隨機因素的作用,因此得F值從理論上應(yīng)1,不會小于1,所以方差分析中F檢驗是單側(cè)檢驗。檢驗1 檢驗用途:常用于分類變量資料的統(tǒng)計推斷,主要用途包括:單樣本分布的擬合優(yōu)度;比較兩個或多個獨立樣本頻率分布;比較配對設(shè)計兩樣本頻率和兩頻率分布;推斷兩個變量或特征之間有無關(guān)聯(lián)性。2 檢驗的理論基礎(chǔ)是X2分布和擬合優(yōu)度檢驗。分布是一種連續(xù)型隨機變量的概率分布,按分布的密度函數(shù)可給出自由度=1,2,3,的一簇分布曲線。 分布形狀完全依賴于自由度v的大小,當(dāng)v1時,隨著v的增加,曲線逐漸趨于對稱;當(dāng)自由度v趨于時,分布逼近正態(tài)分布。擬合優(yōu)度檢驗是根據(jù)樣本的頻率分布檢驗其總體分布是否等于給定的理論分布。3 X2檢驗的基本思想是:用統(tǒng)計量度量實際頻數(shù)和理論頻數(shù)之間的偏離程度,永遠(yuǎn)是正值,檢驗統(tǒng)計量的基本公式是:=,v=k-1-s,s是用樣本估計量代替總體參數(shù)的個數(shù)。若假設(shè)成立,則各格子的實際頻數(shù)與理論頻數(shù)相差不應(yīng)該很大,因而算出的X2值也不會很大,即出現(xiàn)較大值的概率P很小。若P,則認(rèn)為A與T的差別已超出了抽樣誤差允許的范圍,拒絕H0。若P,不拒絕H0。4獨立樣本22列聯(lián)表資料的檢驗:H0:兩總體率相等;H1:兩總體率不等。 n40且Tmin5, =,=,v=1; n40且1T5,校正公式:=,=,v=1; n40或T1,或P時,F(xiàn)isher精確概率法。5獨立樣本RC列聯(lián)表資料的檢驗:(多個獨立樣本率、獨立樣本頻率分布的比較)H0:多個總體率相等;H1:多個總體率不等。=n,v=(R-1)(C-1)要求:理論頻數(shù)不宜太小,一般不宜有1/5以上的格子的理論頻數(shù)小于5,或不宜有一個理論頻數(shù)小于1,否則可能會產(chǎn)生偏性。如果不滿足此要求,處理方法有:增加樣本含量(首選);結(jié)合專業(yè)知識考慮是否可以將該格所在行或列與別的行和列合并,要根據(jù)樣本特性來確定,但會損失信息;改用RC表Fisher精確概率法,可以用計算機軟件實現(xiàn)。RC列聯(lián)表的分割:多個實驗組間的兩兩比較:分析目的為k個實驗組間,任兩個率均進(jìn)行比較時,須進(jìn)行次獨立的四格表檢驗,再加上總的行列表資料的檢驗,共次檢驗假設(shè)。故檢驗水準(zhǔn)用下式估計:=,=,為樣本率的個數(shù)。實驗組與同一個對照組的比較:分析目的為各實驗組與同一個對照組的比較,而各實驗組間不須比較。其檢驗水準(zhǔn) 用下式估計:=。6配對設(shè)計資料的X2檢驗:配對22列聯(lián)表資料的X2檢驗(兩種處理方法陽性率的比較):H0:兩總體陽性率相等;H1:兩總體陽性率不等。 當(dāng)b+c40時,=,v=1;當(dāng)b+c50,用Z檢驗。注意事項:編秩時遇差值為0舍去,n隨之減??;遇有差值的絕對值相等,符號相同,仍按順序編秩;符號不同,取其平均秩次;T+T-=n(n+1)/24wilcoxon秩和檢驗:目的是推斷連續(xù)型變量資料或有序變量資料的兩個獨立樣本代表的兩個總體分布是否有差別。方法要點:將兩組數(shù)據(jù)由小到大同一編秩,以樣本列數(shù)小者為n1,其秩和為T,查T界值表確定P值;正態(tài)近似法:當(dāng)n110或n2- n110時,T分布接近均數(shù)為n1(N+1)/2,方差為n1 n2(N+1)/2的正態(tài)分布,可用Z檢驗。注意事項:編秩中若有相同的數(shù)據(jù)在同一組則依次編秩;若相同數(shù)值在不同組內(nèi),求平均秩次;當(dāng)相持出現(xiàn)較多時(超過25),需使用校正公式。基本思想:假設(shè)含量為n1與n2的兩個樣本(且n1n2),來自同一總體或分布相同的兩個總體,則n1樣本的秩和T1與其理論秩和n1(N+1)/2相差不大,即T- n1(N+1)/2僅為抽樣誤差所致。當(dāng)二者相差懸殊,超出抽樣誤差可解釋的范圍時,則有理由懷疑該假設(shè),從而拒絕H0。5Kruskal-Wallis H檢驗:目的:用于推斷定量變量或有序分類變量的多個總體分布有無差別。方法要點:先將k組數(shù)據(jù)由小到大同一編秩,求出各組秩和Ri,計算檢驗統(tǒng)計量H;當(dāng)組數(shù)k=3,且各組例數(shù)ni5時,查H界值表確定P值;若k3或最小樣本例數(shù)大于5,則H統(tǒng)計量近似服從v=k-1的分布。注意事項:編秩中若有相同的數(shù)據(jù)在同一組則依次編秩;若相同數(shù)值在不同組內(nèi),求平均秩次;當(dāng)相持出現(xiàn)較多時(超過25),需使用校正公式;當(dāng)結(jié)論為拒絕H0,認(rèn)為多組處理效應(yīng)不全相同時,常需進(jìn)一步作多個樣本的兩兩比較的秩和檢驗。兩變量關(guān)聯(lián)性分析1相關(guān)系數(shù)的意義及計算:相關(guān)系數(shù)=??傮w相關(guān)系數(shù),若0,稱X和Y線性相關(guān);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論