




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TowardsWidebandLinearRFTransmittersforMillimeter-
WaveArrays
YikuanChen
ElectricalEngineeringandComputerSciencesUniversityofCalifornia,Berkeley
TechnicalReportNo.UCB/EECS-2025-53
/Pubs/TechRpts/2025/EECS-2025-53.html
May14,2025
Copyright?2025,bytheauthor(s).
Allrightsreserved.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermission.
TowardsWidebandLinearRFTransmittersforMillimeter-WaveArrays
by
YikuanChen
Areportsubmittedinpartialsatisfactionofthe
requirementsforthedegreeof
MasterofScience,planII
in
Engineering-ElectricalEngineeringandComputerSciences
inthe
GraduateDivision
ofthe
UniversityofCalifornia,Berkeley
Committeeincharge:
ProfessorAliM.Niknejad,Chair
ProfessorKristoferPister
Spring2025
ThereportofYikuanChen,titledTowardsWidebandLinearRFTransmittersforMillimeter-WaveArrays,isapproved:
Chair
Date
Date
Date
5/4/2025
5/12/2025
UniversityofCalifornia,Berkeley
TowardsWidebandLinearRFTransmittersforMillimeter-WaveArrays
Copyright2025
by
YikuanChen
1
Abstract
TowardsWidebandLinearRFTransmittersforMillimeter-WaveArrays
by
YikuanChen
MasterofScienceinEngineering-ElectricalEngineeringandComputerSciences
UniversityofCalifornia,Berkeley
ProfessorAliM.Niknejad,Chair
Thisreportfocusesondesigningahigh-linearitytransmitter(TX)formillimeter-wave(mm-Wave)wirelesscommunication.Torealizeacommonmoduletransceiverthatinterfaceswithdiferentfrontendmodulesfordiferentfunctionalities,theTXisrequiredtocoverawidefrequencybandwithhighinstantaneousradio-frequency(RF)bandwidth,lownoise,andhighlinearityatRFandbasebandports.Diferentarchitecturestorealizethesegoalsforamm-WaveTXareinvestigatedanddiscussed.Ahigh-linearityactivemixerisproposedtoachievea?atinputimpedancecurveversusvaryingbasebandinputfromthedigital-to-analogconverter(DAC).Thisdesignwasfabricatedin28nmbulkcomplementarymetal-oxide-semiconductor(CMOS)technology.Next,acompleteTXwith10-bitbasebandDAC,?lter,anddistributedactivemixerwithtransmissionline(T-Line)powercombinerandlocaloscillator(LO)chain,fabricatedinthesameprocess,isdiscussed.Thisdesignoperatesfrom
13GHzto50GHzanddemonstrates2.5dBmcompressionpointandpowerconsumptionof
71mWona1.2Vsupplyinsimulations.
i
Tomyfamily.
ii
Contents
Contentsii
ListofFiguresiii
ListofTablesv
1Introduction1
1.1TraditionalTransmittervs.DistributedRF-DAC 1
2HighLinearityActiveMixer4
2.1High-LinearityMixer 4
2.2PassiveMixer 5
2.3ActiveMixer 6
3High-LinearityDACwithDistributedMixer14
3.1Overview 14
3.2High-LinearityDAC 14
3.3High-SpeedFPGA-to-ChipCDR 18
3.4CurrentMirrorFilter 20
3.5DistributedActiveMixer 22
3.6DualModeWidebandLOChain 24
3.7TransmitterOverview 29
3.8TestSetup 30
3.9Measurement 32
4Conclusion36
Bibliography37
iii
ListofFigures
1.1Proposedwideband“commonmodule”covers28-50GHzRFbandwidthatthe
inputwith200MHzbasebandbandwidthandcaninterfacetomanydiferent
front-endmodulestorealizediferentfunctionality 2
1.2Traditionaltransmitterblockdiagram 2
1.3RF-DACblockdiagram 3
2.1Passivemixerschematic.NotetheoutputcapacitorsrepresenttheESDdiodes.
TheoutputismatchedviaanasymmetricT-coil.TheresistorsbootstraptheIF
signaltothemixergates,toremoveIF-dependentlinearityefects 6
2.2Passivemixerlayout,viewedinCadenceVirtuoso.TheT-coilmatchingisatthe
top,thedriverchokeisbelow 7
2.3Simpli?edmodelforsingle-balancedactivemixer 8
2.4GmcurveshiftingduetoasymmetricdiferentialMOSFETpair,citedfrom[6].8
2.5Linearity-improvedactivemixer 9
2.6Schematicand?oorplanofthelinearity-improvedactivemixer 10
2.7Layoutoflinearity-improvedactivemixer 10
2.8Comparisonofgaincompressionoftraditionalmixerandtheproposedmixer 11
2.9ComparisonofSignal-to-Noise-and-DistortionRatiooftraditionalmixerandthe
proposedmixer 11
2.10FundamentalandIM3outputpowermeasurements 12
2.11Chipphotoforthepassiveandactivemixers 13
3.1Systemblockdiagramofthetransmitter 15
3.2Conventionalcurrent-steeringDAC 15
3.3ConventionalandCascodedcurrent-steeringDAC 16
3.4Folded-Cascodecurrent-steeringDAC 17
3.5Six-bitbinary-weightedinputbranchesareconnectedtothesamefoldedbranch.17
3.6Layoutofthefolded-cascodecurrent-steeringDAC 18
3.7BlockDiagramofClock-DataRecovery(CDR)circuittoalignthebits 19
3.8Clock-DataRecovery(CDR)circuittoalignthebits 19
3.9Currentmirror?lterschematic.Theinputisontheleftside,andtheoutputis
ontheright 20
3.10Currentmirror?lterBodeplot.Notethezerofromthem-derivedsections 21
iv
3.11Layoutofthecurrentmirror?lter 21
3.12SimulationoftheDACwiththe?lter 22
3.13Distributedmixerandoutputmatchingnetwork 23
3.14Double-Balancedactivemixerquad 23
3.15Distributedmixerlayout 24
3.16Distributedmixerlayoutonthechip 25
3.17Simulateddistributedmixergain 26
3.18DistributedmixerwithI/QpullingatOP1dB 26
3.19DistributedmixerwithoutI/QPullingatOP1dB 27
3.20DistributedmixerwithI/QpullingatOP0.5dB 27
3.21DistributedmixerwithoutI/QPullingatOP0.5dB 28
3.22LOchainconcept.Lowandhighfrequencyampli?erpaths,followedbyaswitch
networktoselectthedesiredfrequencyband.TheLOsignalisthenfedintothe
distributedmixer(thetransmissionline) 28
3.23ThelowfrequencyLOchain,priortothe?naldriverstage.Notethattheam-
pli?ersaresimplyinverters.Anarti?cialtransmissionlineLChybridisbasedon
[2],with4-bittunedcapacitors 29
3.24Thefour?ngerLangecoupler.Thedummymetal(blue)?llsthesurrounding
regionstopassthedi”cultdensityDRCrules 29
3.25CompletelayoutoftheLOchains.ThelumpedandLangehybridsareinthe
centerofthechip,withtheI/Qampli?erchainslaidoutsymmetricallyaround
themixer 30
3.26Architectureofthetransmitter 31
3.27Testsetupblockdiagram 32
3.28Probestationsetupofthechip 33
3.29Layoutofthewidebandlineartransmitter 34
3.30DiePhotoofwidebandlineartransmitter 35
v
ListofTables
2.1SimulatedOIP3oftheproposedactivemixer.......
.............
5
2.2SimulatedOIP3oftheproposedactivemixer.......
.............
9
2.3MeasuredP1dBoftheproposedactivemixer........
.............
11
3.1Summaryoftheperformanceofthedistributedmixer..
.............
25
3.2Summaryoftheperformanceoftheoverallsystem....
.............
30
vi
Acknowledgments
Iwouldliketobeginbyexpressingmydeepestgratitudetomyadvisor,ProfessorAliNikne-jad.Hisunwaveringsupportthroughoutmydegreehasbeeninstrumentalinshapingmeintoawell-roundedengineer,andhisprofoundexpertisehasbeenaconstantsourceofin-spirationformyresearch.IamalsoimmenselythankfultoProfessorKristoferPisterforhisinsightfulguidanceandadvice.
Aspecialthanksgoestomycolleague,RohitBraganza,withwhomIcollaboratedcloselyontheMIDASproject,successfullycompletingtwotapeoutstogether.IamalsogratefultoSashankKrishnamurthyandNimaBaniasadifortheirinvaluablesuggestionsandassistancethroughoutthisresearch,aswellastoHeshamBesharyandAliAmerifortheirhelpwithtesting.
IextendmyappreciationtoAveralKandalaforhisthoughtfulfeedback,whichgreatlyimprovedtheclarityandprofessionalismofmywriteup.Additionally,IthankDARPAforfundingthisprojectandacknowledgethemembersofDARPA,Intel,andTexasInstrumentsfortheirconstructivefeedbackduringourdiscussions.
1
Chapter1
Introduction
ThisprojectispartoftheMillimeter-waveDigitalArrays(MIDAS)researchprogramwhichaimedtoadvancethestate-of-the-artdesignofcomplementarymetal-oxide-semiconductor(CMOS)wirelesstransceiverstoaddressemergingapplicationsindigitalbeamforming.5Gcommunicationutilizesarichspectruminmillimeter-wave(mm-Wave)bands.Inparticular,theFR2spectrumextendsfrom26.5GHzto71GHzindiferentcountries/regions.Tosupportthesedisparatebands,diferenttransceiversdesignedforspeci?cfrequencyrangesarerequired.Thisapproachisnotonlycostly,butdemandslotsofvaluableprintedcircuitboard(PCB)area,especiallyonmobiledevices.Hence,itishighlybene?cialtodesignasingletransceiverthatsupportsawideRFfrequencyrange,toallowthesystemtosupportmultipleapplications,suchasMultiple-InMultiple-Out(MIMO)communicationandmm-Waveradar.
Theaimoftheprojectistoprovidea”commonmodule”,realizedinlow-costCMOStechnology,thatcaninterfacewithahighperformanceTX/RXfront-endmoduledesignedforaspeci?cbandorapplication,asshowninFig.1.1.ForTXapplications,the“com-monmodule”shouldbeas?exibleaspossible,accommodatingdiferentPAoutputpower,modulationschemes,andothertransmitterspeci?cations.
Toachievesuchversatility,thetransceiverisrequiredtohavewideoperationalband-width,highinstantaneousRFbandwidth,lownoise?gure,aswellashighlinearityatbothRFandbasebandports.
1.1TraditionalTransmittervs.DistributedRF-DAC
Atraditionaltransmittertypicallyconsistsofthefollowingstages:aDigital-to-AnalogCon-verter(DAC),abasebandFilter,anup-convertingMixer,anRFFilter,andaPowerAm-pli?er,asshowninFig.1.2.Thisapproachbene?tsfromsimpleLOdistributiontotheup-convertingmixer.However,toachievehighlinearityintheoveralltransmitter,eachstagemustbeextremelylinearbyitself.Often,thelinearitydegradesduetosignal-dependentcurrentthroughthemixerand?niteoutputimpedanceintheDAC.
2
CHAPTER1.INTRODUCTION
Figure1.1:Proposedwideband“commonmodule”covers28-50GHzRFbandwidthatthe
inputwith200MHzbasebandbandwidthandcaninterfacetomanydiferentfront-end
modulestorealizediferentfunctionality.
Figure1.2:Traditionaltransmitterblockdiagram.
Incontrast,anRF-DACtransmitterusesadistributeddesign,asshowninFig.1.3,whereeachelementconsistsofaDACandamixerwithlessoutputpowerthanthetraditionalcounterpart.NsuchelementsarethencombinedtogetherattheRFoutput.ThereisnoexplicitPAinthetransmitter,asapowercombiner,suchasthatformedoftransmissionlines(T-lines),sumsupthepowerdeliveredbyeachcellfordeliverytotheoutput.Toobtainhighlinearityattheoutput,considerabledesignoptimizationisrequired.LOdistributiontoeachmixerisneeded,andthematchingbetweeneachelementlimitstheoveralllinearityofthesystem.ThekeyadvantageofthisapproachiseliminatingthePA,whichavoidsthenonlinearityande”ciencytrade-ofsinherentinsingle-stagePAs.Bydistributingpowergenerationacrossmanylow-power,linearelements,theRF-DACachieveshighoutputpower
3
CHAPTER1.INTRODUCTION
withimprovedlinearityande”ciency.
Figure1.3:RF-DACblockdiagram.
Thisprojectexploresthepotentialandlimitsofdi!erentdesignsonthisspectrum.High-linearityglobalmixers(passiveandactive),describedinCh.2,aredesignedandfabricated,alongwithacompleteRF-DACtopologyutilizingdistributedcombining,withabasebandDAC,analog?lters,anddistributedup-conversionmixerstodrivedi!erentpointsonatransmissionlinetocombineIandQsignalswhileboostingtheoutputpowercompressionpoint.TheRF-DACprototypeisdescribedinCh.3.Thetransmitterwasjointlydesignedandfabricatedbytheauthor(high-linearityDAC,high-speeddigitallinkwithclock-data-recoverycircuit),RohitBraganza(baseband?lter,LOchains)andSashankKrishnamurthy(distributedmixer).
4
Chapter2
HighLinearityActiveMixer
2.1High-LinearityMixer
Inatransmitter,anidealmixertranslatesthebasebandsignaltoahigherfrequencywithoutdistortingtheinformationcontainedinthesignal.Amixeritselfisanon-linearsystemwithrespecttobothitsbaseband(orintermediatefrequency,IF)inputandthelocaloscillator(LO)inputbecausenewfrequencycontentiscreatedattheoutputport.However,agoodmixershouldstillbehave”linear”inthesensethatitsRFoutputamplitudeshouldbeproportionaltotheIFinputamplitude.Inotherwords,theconversiongain,whichisde?nedforatransmittermixerastheratioofthedesiredRFoutputsignalamplitudetotheIFinputsignalamplitude,shouldbeconstantandindependentoftheinputsignalvalue.Inrealmixers,therearelimitsbeyondwhichtheRFoutputhasasub-lineardependenceontheIFinput[9].Theoutputcompressionpointforatransmittermixeristhepoweroftheoutputsignalatwhichtheconversiongaindecreasesfromtheidealconstantgainvalue.Usuallya1-dBcompressionvalue(knownasOP1dB)isspeci?ed.Theoutputtwo-tonethird-orderinterceptpoint(OIP3)isalsooftenusedtocharacterizethelinearityoftransmittermixers.Itisanextrapolatedvalueoftheoutputpoweratwhichthethird-orderintermodulationcomponentswouldbeequaltothatofthedesiredRFoutputsignal(calledthefundamental).
Oneofthekeyspeci?cationsofagoodtransmittermixerisitslinearity.ThehighertheP1dBorOIP3is,thebetterthelinearity.Therearemanywaystoimprovethelinearityofthemixer:[4]usesdynamiccurrentinjectiononadouble-balancedactivecurrentmixerinareceiverforsub-6GHz.[1]introducedfully-diferentialDarlingtoncellsintheRFtransconductancestagetoreducethethird-ordernon-linearity.[7]improvedthelinearityofanup-convertingmixerusingtheImprovedDerivativeSuper-Position(I-DS)techniquecascadedbetweenthemixer’stransconductanceandswitchingstage.Thistechniqueen-hancesmixerlinearitybycancelingthird-orderdistortion(IM3)usingopposingnonlinearcurrentsfromcarefullybiasedtransconductancedevices.Thismaintainsgainande”ciencybutrequiresprecisedevicematchingandbiasing,makingitsensitivetoprocessvariations
5
CHAPTER2.HIGHLINEARITYACTIVEMIXER
andtemperaturechanges.Imperfectionscandegradeperformance,complicatingdesignandmanufacturing.Mostoftheaforementionedmethodscomewithincreasedcurrentconsump-tion.Infact,improvingtheP1dBby1dBusuallyrequiressigni?cantlyincreasedcurrentconsumptionanddegraded?ickernoiseperformance.
Themethodproposedhererelieson?atteningthelargesignaltransconductanceGmofthe”switching”stage(thedevicesalwaysworkinsaturationregion,sotechnicallytheyarenotswitchingdevices,buttheterm”switching”isusedheretoindicatethatitisthestagethathascommon-sourceLOandcommon-gateIFinput)acrossVGSduetothechangingIFcurrent.Thesimulationshowsthattheresultingmixerwithextracteddeviceshasbettersignal-to-distortion-ratio(SNDR)thanaconventionaldoublebalancedactivemixer,withatrade-ofinsignal-to-noiseratioatlowIFinputamplitude.
ThemixerchipdiscussedinthissectionwasdesignedandsubmittedforfabricationinaTSMC28nmBulkCMOSprocessinOctober2019.Themixersareassumedtobeusedinatraditionaltransmitterarchitectureastheglobalmixer,sothekeydesigngoalwastoachievehighlinearitywithasinglemixer.Twomixerdesignswereinvestigated:apassivemixer,designedbyRohitBraganza,andanactivemixer,bothofwhichwereaimedtoachievehighlinearitybyreducingthesignal-dependentquantitiesinthecircuit.Theprincipleoftheproposedactivemixerwillbediscussedindetail.
2.2PassiveMixer
TheschematicofthedesignedpassivemixerisshowninFig.2.1.Itconsistsofthestandarddouble-balancedmixertopology,withtheadditionofbootstrappingresistorsfromtheIFinputtothegateofthemixertransistorstofurtherimprovethelinearity.Theseresistorscausethegatetotrackthe(lowfrequency)IFport,keepingthetransistors’VgsindependentoftheIFsignal,whichreducesintermodulation(IM)productsduetotheIFsignal[8].
Themixerisdrivenbyasimplecommonsourceampli?erwithachokeinductorload.Tokeepthestructurebroadband,asymmetricT-coilswereusedasoutputmatchingnetworkstotheprobepadsandtheirESDdiodes.TheoveralllayoutisshowninFig.2.2.ThemeasuredresultsaregiveninFig.2.1,andwerewithin1-2dBofsimulation;themixershowedareasonableOIP3foralowpowerconsumption(8.4mWat24GHz,15.6mWat40GHz),andwascapableofoperatingacrossawidebandwidth.
Frequency(GHz)MeasuredP1dB(dBm)MeasuredOIP3(dBm)SimulatedOIP3(dBm)
24
-4.3
4.16
5.25
32
-9.1
1.89
3.1
40
-8.9
0.41
1.5
Table2.1:SimulatedOIP3oftheproposedactivemixer.
6
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.1:Passivemixerschematic.NotetheoutputcapacitorsrepresenttheESDdiodes.
TheoutputismatchedviaanasymmetricT-coil.TheresistorsbootstraptheIFsignalto
themixergates,toremoveIF-dependentlinearityefects.
2.3ActiveMixer
Anactivemixerisnamedsobecauseitprovidespowergainwithactivedevices.Fig.2.3showsthecurrent?owinasingle-balancedactivemixer.Foranalysispurposes,wesimplifytheIFinputtobeacurrentsourcewithsome?niteoutputconductance,G0.Thediferentialpairforthecommon-source(CS)LOinputisbiasedinsaturationmodeatalltimesandthereissomeconstantDCbleedingcurrentsunkbythetaildevice.Atanygivenmoment,thefollowingequationsdescribetherelationshipbetweenthecurrentindiferentbranches:
i1+i2=iin+GoVs
i1≈f(VG0+,Vs)(2.1)
i2≈f(VG0-,Vs)
Ifwewritei1intermsoftheDCtermandthederivativeofi1withrespecttoVGandVS
7
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.2:Passivemixerlayout,viewedinCadenceVirtuoso.TheT-coilmatchingisat
thetop,thedriverchokeisbelow.
timesthediferentialquantities,wewillget:
The?rsttermistheDCcurrentwithnosignal.ThesecondistheLOfeedthroughtermwhichwillgetcancelledinthedouble-balanceddiferentialoutput.Thethirdterm,whichisalittlebitmorecomplicatedifwetakethefullderivative,isanon-linearandtime-varyingterm(astheIFsignalchanges),whichgeneratesdistortionandmixing.Thefourthtermisalsonon-linearandtime-varying,anditalsochangesastheIFsignalchanges.ThissimpleTaylorSeriesexpansionshowsthattheoutputcurrentdepends,inanon-linearway,onboththesource(input)voltageandgate(LO)voltage.TheLOcontrolsthegatesinatimeperiodicway,andthesourcevariesduetotheDACandthesecondharmonicoftheLO.Atanygivenmoment,thevalueofvS,and,consequently,thecurrentthat?owsintothediferentialpairversusthecurrentthat?owsintotheloadGodependsontheratiobetweenGo(t)andGm(t).EvenwithanidealDACwithoutputimpedanceindependentofthesignal,thedesignwouldstillsuferfromnon-linearitybecauseGm(t)variesinmagnitudeduetothesourcevoltagevarying.Therefore,?atteningtheGmwithrespecttothevaryingsourcevoltage,wouldallowthetotalproportionalcurrent?owingintothediferentialpaircomparedtowhatthecurrentsourcegeneratestobemoreconstant.AstheGmis?attened,theinputimpedanceseenbytheDACstaysconstantacrossinputpower,andtheoutputamplitudeofthemixerwillbelinearizedasthebasebandDACcurrentchanges.
8
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Inadiferentialampli?erwithtailcurrentISS,ifthetwoinputMOSFETsarediferentinsize,thelargesignaltransconductanceGmvs.VGScurvewillshifttotheleftortotheright,asshowninFig.2.4[6].Ifthedrainsofthetwooppositecopiesofsuchanampli?erarecombined,theoverallGmcurvecouldbe?attened,andthisisexactlywhatisneeded.
ThearchitectureoftheproposedactivemixerisshowninFig.2.5.Itisamodi?edcurrent-commutatingmixer(Gilbert-typemixer).Insteadofonecurrent-steeringDAC(+and–outputs),weusetwo,buteachonlyburnshalfofthecurrent.Thetopologyisadaptedfromtheampli?erbyconnectingthedrainsofthetwoGm-linearizedampli?erstogether.BypurposelyintroducingasymmetrybetweentheLO+andLO-transistors,wecanreducethenon-linearmixingtermattheoutput.
Figure2.3:Simpli?edmodelforsingle-balancedactivemixer.
Figure2.4:GmcurveshiftingduetoasymmetricdiferentialMOSFETpair,citedfrom[6]
Fortestingpurposes,wereplacedeachofthetwoDACswithacommon-gateinputstagetoallowenoughheadroomforswingattheoutput.TheIFinputisAC-coupledtothesources
9
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.5:Linearity-improvedactivemixer.
ofthesecommon-gatetransistorswithDCsettogroundthroughbaluns.Theschematicandlayout?oorplanisshowninFig.2.6andFig.2.7.TheDCcurrentconsumptionofthemixeris13.5mAunder1.2Vsupply,butthiscurrentwillbesharedwiththeDAC.Wesimulateditsperformanceatrelativelyhighoutputpower(non-linearitydominatingthesignal-to-interference-and-distortionratio(SINAD))incomparisontoatraditionaldouble-balancedmixeratthesameoutputpowerandtotalDCcurrentconsumption,andtheresultisshowninFig.2.8andFig.2.9.NotethatbecausemoreactiveMOSFETsareusedinthisdesign,theSINADwillbelowerthanthatofatraditionaldouble-balancedmixerwhenthesignalpowerisverylow(suchthatthenoisepowerdominatestheSINAD).TheOIP3simulatedat25.6GHzwith200MHzbandwidthIFinputusingextractedtransistorsandideal50Ωsource/loadimpedanceis10.96dBm,anditis10.38dBmat50GHz,asshowninTable2.2.Theoutput50OhmloadsaredirectlyconnectedtotheVDD.
Frequency
25.6GHz
50GHz
OIP3
10.96dBm
10.38dBm
Table2.2:SimulatedOIP3oftheproposedactivemixer.
ThemixerchipwasfabricatedinTSMC28nmbulkCMOStechnology.Thechipphotoisshownin2.11.Theoutputpowerat24,28,32,and36GHzwith200MHzIFbandwidthwasmeasuredandshowninFig.2.10.Theconversiongainsarelessthanunityduetothelossoftheprobes,cables,andmatchingnetworks.FortheOIP3test,oneIFtoneat150MHzandoneat200MHzarepower-combinedbeforeconnectingtothepowerdividerfortheIFinput.NotethattheOIP3extrapolatedatdiferentpointsvaries,astheslopeofthethird-orderharmonics(indBscale)isnotconstant,asopposedtothecommonlyseen3dB/dB
10
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.6:Schematicand?oorplanofthelinearity-improvedactivemixer.
Figure2.7:Layoutoflinearity-improvedactivemixer.
slope,andhencetheintersectionsofthetrend-linesdoesnotrepresenttheIP3points.Thisislikelycausedbyhigher-ordernonlineartermsthatfallattheIM3frequencies,causingtheamplitudetochange.Table2.3showstheP1dBmeasuredatdiferentfrequencies.ThemeasuredOIP3valuesarelowerthanthesimulatedOIP3values(loadedwitha50Ohmloaddirectly)ateachfrequencyduetotheoutputmatchingontheactualfabricatedchip.
11
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.8:Comparisonofgaincompressionoftraditionalmixerandtheproposedmixer.
Figure2.9:ComparisonofSignal-to-Noise-and-DistortionRatiooftraditionalmixerandthe
proposedmixer.
Frequency
24GHz
28GHz
32GHz
36GHz
P1dB
-4.71dBm
-9.29dBm
-7.74dBm
-8.82dBm
OIP3(extrapolated)
4.89dBm
0.31dBm
1.86dBm
0.78dBm
Table2.3:MeasuredP1dBoftheproposedactivemixer.
12
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.10:FundamentalandIM3outputpowermeasurements.
13
CHAPTER2.HIGHLINEARITYACTIVEMIXER
Figure2.11:Chipphotoforthepassiveandactivemixers.
14
Chapter3
High-LinearityDACwithDistributedMixer
3.1Overview
AsdiscussedinCh.1,thetraditionaltransmitterarchitecturewithglobalDAC,mixer,andPAandthedistributedRF-DACarchitecturewithNDAC-mixerelementsareonoppositeendsofthedesignspectrum.Thereis,however,stillalargedesignspacebetweenthetwoextremes.OnepossiblechoiceistoeliminatetheexplicitPAasprescribedbytheRF-DACarchitecture,butinsteadofusingthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采石場承包合同范本及資源保護(hù)與利用協(xié)議
- 招生團(tuán)隊協(xié)議書范本
- 民族風(fēng)情步行街個人店鋪租賃與文化傳承合同
- 餐飲場地租賃合同范本:包含租賃合同終止及清算條款
- 代理人協(xié)議書范本
- 拆除工程臨時交通疏導(dǎo)合同范本
- 寵物寄養(yǎng)買賣協(xié)議書范本
- 餐飲行業(yè)廚師勞務(wù)派遣與菜品創(chuàng)新合同
- 資產(chǎn)清算拍賣委托代理合同書范本
- 水利設(shè)施拆除工程安全監(jiān)管協(xié)議
- 2025年全國新高考II卷高考全國二卷真題英語試卷(真題+答案)
- 經(jīng)濟(jì)法學(xué)-001-國開機考復(fù)習(xí)資料
- 2024年廣東省中考生物+地理試卷(含答案)
- 室外供熱管網(wǎng)設(shè)計計算書案例
- 外國城建史(復(fù)習(xí)整理)
- 高考語文必備古詩文(含翻譯及賞析)
- 食品中日文加工用語
- 小班化教育課堂教學(xué).ppt
- 等效內(nèi)摩擦角計算表
- 2×1000MW高效清潔燃煤發(fā)電項目建議書寫作模板-
- 繼承不動產(chǎn)登記具結(jié)書
評論
0/150
提交評論