安徽省江南十校2025年數(shù)學高二下期末綜合測試試題含解析_第1頁
安徽省江南十校2025年數(shù)學高二下期末綜合測試試題含解析_第2頁
安徽省江南十校2025年數(shù)學高二下期末綜合測試試題含解析_第3頁
安徽省江南十校2025年數(shù)學高二下期末綜合測試試題含解析_第4頁
安徽省江南十校2025年數(shù)學高二下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省江南十校2025年數(shù)學高二下期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)隨機變量X~B(n,p),且E(X)=1.6,D(X)=1.28,則A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.452.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.3.下列命題中正確的個數(shù)()①“?x>0,2x>sinx”的否定是“?x0≤0,2x0≤sinx0”;②用相關(guān)指數(shù)R2可以刻畫回歸的擬合效果,A.0 B.1 C.2 D.34.若,則“成等比數(shù)列”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件5.曾玉、劉云、李夢、張熙四人被北京大學、清華大學、武漢大學和復旦大學錄取,他們分別被哪個學校錄取,同學們做了如下的猜想甲同學猜:曾玉被武漢大學錄取,李夢被復旦大學錄取同學乙猜:劉云被清華大學錄取,張熙被北京大學錄取同學丙猜:曾玉被復旦大學錄取,李夢被清華大學錄取同學丁猜:劉云被清華大學錄取,張熙被武漢大學錄取結(jié)果,恰好有三位同學的猜想各對了一半,還有一位同學的猜想都不對那么曾玉、劉云、李夢、張熙四人被錄取的大小可能是()A.北京大學、清華大學、復旦大學、武漢大學B.武漢大學、清華大學、復旦大學、北京大學C.清華大學、北京大學、武漢大學、復旦大學D.武漢大學、復旦大學、清華大學、北京大學6.玲玲到保山旅游,打電話給大學同學姍姍,忘記了電話號碼的后兩位,只記得最后一位是6,8,9中的一個數(shù)字,則玲玲輸入一次號碼能夠成功撥對的概率是()A.13 B.110 C.17.已知函數(shù),若的兩個極值點的等差中項在區(qū)間上,則整數(shù)()A.1或2 B.2 C.1 D.0或18.設(shè)集合,集合,則()A. B. C. D.9.若函數(shù)在處取得極小值,則的最小值為()A.3 B.4 C.5 D.610.一個盒子里有6支好晶體管,5支壞晶體管,任取兩次,每次取一支,每次取后不放回,已知第一支是好晶體管時,則第二支也是好晶體管的概率為()A.23B.512C.711.設(shè)是公比為的等比數(shù)列,則“對任意成立”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知拋物線的焦點為F,過點F分別作兩條直線,直線與拋物線C交于兩點,直線與拋物線C交于點,若與直線的斜率的乘積為,則的最小值為()A.14 B.16 C.18 D.20二、填空題:本題共4小題,每小題5分,共20分。13.一個長方體共一項點的三個面的面積分別是,這個長方體對角線的長是____________.14.若對一切恒成立,則a的取值范圍為________.15.在長方體中,,,點為線段的中點,點為對角線上的動點,點為底面上的動點,則的最小值為______.16.在的展開式中的系數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知某單位甲、乙、丙三個部門共有員工60人,為調(diào)查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眠的時間,數(shù)據(jù)如下表(單位:小時)甲部門678乙部門5.566.577.58丙部門55.566.578.5(1)求該單位乙部門的員工人數(shù)?(2)從甲部門和乙部門抽出的員工中,各隨機選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設(shè)所有員工睡眠的時間相互獨立,求A的睡眠時間不少于B的睡眠時間的概率;(3)若將每天睡眠時間不少于7小時視為睡眠充足,現(xiàn)從丙部門抽出的員工中隨機抽取3人做進一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機變量X的分布列與數(shù)學期望.18.(12分)已知雙曲線,為上的任意點.(1)求證:點到雙曲線的兩條漸近線的距離的乘積是一個常數(shù);(2)設(shè)點的坐標為,求的最小值.19.(12分)觀察下列等式:;;;;;(1)猜想第n(n∈N*)個等式;(2)用數(shù)學歸納法證明你的猜想.20.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若存在使不等式成立,求實數(shù)的取值范圍21.(12分)選修4-5:不等式選講已知函數(shù).(1)若不等式的解集為,求實數(shù)的值;(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.22.(10分)已知等差數(shù)列的前項和為,,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】列方程組,解得.2、B【解析】

先計算出,由正態(tài)密度曲線的對稱性得出,于是得出可得出答案.【詳解】由題可知,,由于,所以,,因此,,故選B.本題考查正態(tài)分布在指定區(qū)間上的概率,考查正態(tài)密度曲線的對稱性,解題時要注意正態(tài)密度曲線的對稱軸,利用對稱性來計算,考查運算求解能力,屬于基礎(chǔ)題.3、C【解析】

根據(jù)含量詞命題的否定可知①錯誤;根據(jù)相關(guān)指數(shù)的特點可知R2越接近0,模型擬合度越低,可知②錯誤;根據(jù)四種命題的關(guān)系首先得到逆命題,利用不等式性質(zhì)可知③正確;分別在m=0和m≠0的情況下,根據(jù)解集為R確定不等關(guān)系,從而解得m【詳解】①根據(jù)全稱量詞的否定可知“?x>0,2x>sinx”的否定是“?x②相關(guān)指數(shù)R2越接近1,模型擬合度越高,即擬合效果越好;R2越接近③若“a>b>0,則3a>3b>0④當m=0時,mx2-2當m≠0時,若mx2-2m+1解得:m≥1,則④正確.∴正確的命題為:③④本題正確選項:C本題考查命題真假性的判斷,涉及到含量詞命題的否定、四種命題的關(guān)系及真假性的判斷、相關(guān)指數(shù)的應用、根據(jù)一元二次不等式解集為R求解參數(shù)范圍的知識.4、B【解析】分析:根據(jù)等比數(shù)列的定義和等比數(shù)列的性質(zhì),即可判定得到結(jié)論.詳解:由題意得,例如,此時構(gòu)成等比數(shù)列,而不成立,反之當時,若,則,所以構(gòu)成等比數(shù)列,所以當時,構(gòu)成等比數(shù)列是構(gòu)成的等比數(shù)列的必要不充分條件,故選B.點睛:本題主要考查了等比數(shù)列的定義和等比數(shù)列的性質(zhì),其中熟記等比數(shù)列的性質(zhì)和等比數(shù)列的定義的應用是解答的關(guān)鍵,著重考查了推理與論證能力.5、D【解析】

推理得到甲對了前一半,乙對了后一半,丙對了后一半,丁全錯,得到答案.【詳解】根據(jù)題意:甲對了前一半,乙對了后一半,丙對了后一半,丁全錯,曾玉、劉云、李夢、張熙被錄取的大學為武漢大學、復旦大學、清華大學、北京大學(另外武漢大學、清華大學、北京大學、復旦大學也滿足).故選:.本題考查了邏輯推理,意在考查學生的推理能力.6、D【解析】

由分步計數(shù)原理和古典概型求得概率.【詳解】由題意可知,最后一位有3種可能,倒數(shù)第2位有10種可能,根據(jù)分步計數(shù)原理總共情況為N=3×10=30,滿足情況只有一種,概率為P=1利用排列組合計數(shù)時,關(guān)鍵是正確進行分類和分步,分類時要注意不重不漏.在本題中,只有兩個號碼都拔完這種事情才完成,所以是分步計數(shù)原理.7、B【解析】

根據(jù)極值點個數(shù)、極值點與導函數(shù)之間的關(guān)系可確定的取值范圍,結(jié)合為整數(shù)可求得結(jié)果.【詳解】由題意得:.有兩個極值點,,解得:或.方程的兩根即為的兩個極值點,,綜上可得:,又是整數(shù),.故選:.本題考查極值與導數(shù)之間的關(guān)系,關(guān)鍵是明確極值點是導函數(shù)的零點,從而利用根與系數(shù)關(guān)系構(gòu)造方程.8、C【解析】分析:解不等式,得到和,由集合的交集運算可得到解。詳解:解絕對值不等式,得;由對數(shù)函數(shù)的真數(shù)大于0,得根據(jù)集合的運算得所以選C點睛:本題考查了解絕對值不等式,對數(shù)函數(shù)的定義域,集合的基本運算,是基礎(chǔ)題。9、B【解析】

先對函數(shù)求導,根據(jù)題意,得到,再用導數(shù)的方法研究函數(shù)單調(diào)性,進而可求出結(jié)果.【詳解】因為,所以,又函數(shù)在處取得極小值,所以,所以,因此,由得;由得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;所以;故選B本題主要考查導數(shù)的應用,根據(jù)導數(shù)的方法研究函數(shù)的單調(diào)性,最值等,屬于??碱}型.10、D【解析】試題分析:由題意,知取出一好晶體管后,盒子里還有5只好晶體管,4支壞晶體管,所以若已知第一支是好晶體管,則第二支也是好晶體管的概率為59考點:等可能事件的概率.11、D【解析】

根據(jù)等比數(shù)列的通項公式,由充分條件與必要條件的概念,即可判斷出結(jié)果.【詳解】因為是公比為的等比數(shù)列,若對任意成立,則對任意成立,若,則;若,則;所以由“對任意成立”不能推出“”;若,,則,即;所以由“”不能推出“對任意成立”;因此,“對任意成立”是“”的既不充分也不必要條件.故選:D.本題主要考查既不充分也不必要條件的判斷,熟記概念即可,屬于基礎(chǔ)題型.12、B【解析】

設(shè)出直線的斜率,得到的斜率,寫出直線的方程,聯(lián)立直線方程和拋物線方程,根據(jù)弦長公式求得的值,進而求得最小值.【詳解】拋物線的焦點坐標為,依題意可知斜率存在且不為零,設(shè)直線的斜率為,則直線的斜率為,所以,有,有,,故,同理可求得.故,當且僅當時,等號成立,故最小值為,故選B.本小題主要考查直線和拋物線的位置關(guān)系,考查直線和拋物線相交所得弦長公式,考查利用基本不等式求最小值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由長方體對角線與棱長的關(guān)系計算.【詳解】設(shè)長方體的長、寬、高分別為,則,解得,∴對角線長.故答案為.本題考查求長方體的對角線長,設(shè)長方體棱長分別為,則對角線長.14、【解析】

由題意可得恒成立,設(shè),求得導數(shù)和單調(diào)性、極值和最值,即有a小于最小值.【詳解】對一切恒成立,可得恒成立,設(shè),則,,當時,,遞增;時,,遞減,可得處取得極小值,且為最小值4,可得.故答案為:.本題考查不等式恒成立問題的解法,注意運用參數(shù)分離和導數(shù)的運用,考查運算能力,屬于中檔題.15、【解析】

畫出圖形,利用折疊與展開法則使和在同一個平面,轉(zhuǎn)化折線段為直線段距離最小,即可求得的最小值.【詳解】當?shù)淖钚≈?即到底面的距離的最小值與的最小值之和.為底面上的動點,當是在底面上的射影,即是最小值.展開三角形與三角形在同一個平面上,如圖:長方體中,,長方體體對角線長為:在中:故故過點作,即為最小值.在,故答案為:.解答折疊問題的關(guān)鍵在于畫好折疊前后的平面圖形與立體圖形,并弄清折疊前后哪些條件發(fā)生了變化,哪些條件沒有發(fā)生變化.這些未變化的已知條件都是我們分析問題和解決問題的依據(jù).16、45【解析】分析:根據(jù)展開式的通項公式,求出展開式中的系數(shù),即可得出的展開式中的系數(shù)是多少.詳解:展開式的通項公式為:,令,得的系數(shù)為,且無項,的展開式中的系數(shù)為45.故答案為:45.點睛:求二項展開式中的特定項,一般是利用通項公式進行,化簡通項公式后,令字母的指數(shù)符合要求(求常數(shù)項時,指數(shù)為零;求有理項時,指數(shù)為整數(shù)等),解出項數(shù)k+1,代回通項公式即可.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)24人;(2);(3)X的分布列見解析;數(shù)學期望為1【解析】

(1)分層抽樣共抽?。?+6+6=15名員工,其中該單位乙部門抽取6名員工,由此能求出該單位乙部門的員工人數(shù).(2)基本事件總數(shù)n18,利用列舉法求出A的睡眠時間不少于B的睡眠時間包含的基本事件個數(shù),由此能求出A的睡眠時間不少于B的睡眠時間的概率.(3)X的可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望E(X).【詳解】(1)由題意,得到分層抽樣共抽?。?+6+6=15名員工,其中該單位乙部門抽取6名員工,∴該單位乙部門的員工人數(shù)為:624人.(2)由題意甲部門抽取3名員工,乙部門抽取6名員工,從甲部門和乙部門抽出的員工中,各隨機選取一人,基本事件總數(shù)n18,A的睡眠時間不少于B的睡眠時間包含的基本事件(a,b)有12個:(6,5.5),(6,6),(7,5.5),(7,6),(7,6.5),(7,7),(8,5.5),(8,6),(8,6.5),(8,7),(8,7.5),(8,8),∴A的睡眠時間不少于B的睡眠時間的概率p.(3)由題意從丙部門抽出的員工有6人,其中睡眠充足的員工人數(shù)有2人,從丙部門抽出的員工中隨機抽取3人做進一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),則X的可能取值為0,1,2,P(X=0),P(X=1),P(X=2),∴X的分布列為:X012PE(X)1.本題考查離散型隨機變量的分布列、數(shù)學期望的求法,涉及到古典概型及分層抽樣的基本知識,考查運算求解能力,是中檔題.18、(1)證明見解析.(2)的最小值為【解析】

試題分析:(1)求出雙曲線的漸近線方程,設(shè)點利用點到直線的距離公式,即可得到結(jié)論,寫出距離的乘積,再利用點在雙曲線上得出定值;(2)用點點距公式表示出|PA|,利用配方法,求得函數(shù)的最值,即可求得結(jié)論.(1)設(shè)點,由題意知雙曲線的兩條漸近線方程分別為和,則點到兩條漸近線的距離分別為和,則,得證;(2)設(shè)點,則當時,有最小值.19、(1);(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論