貴州黔南科技學院《智能終端開發(fā)技術》2023-2024學年第二學期期末試卷_第1頁
貴州黔南科技學院《智能終端開發(fā)技術》2023-2024學年第二學期期末試卷_第2頁
貴州黔南科技學院《智能終端開發(fā)技術》2023-2024學年第二學期期末試卷_第3頁
貴州黔南科技學院《智能終端開發(fā)技術》2023-2024學年第二學期期末試卷_第4頁
貴州黔南科技學院《智能終端開發(fā)技術》2023-2024學年第二學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁貴州黔南科技學院《智能終端開發(fā)技術》

2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在智能客服領域的應用需要能夠理解用戶的復雜問題并給出準確的回答。假設要構建一個智能客服系統(tǒng),能夠處理多種領域的問題,以下哪種技術或方法在提高系統(tǒng)的泛化能力和回答準確性方面最為重要?()A.大規(guī)模預訓練語言模型B.基于模板的回答生成C.知識庫的構建和維護D.以上方法同等重要2、在人工智能的情感分析任務中,需要判斷文本所表達的情感傾向,如積極、消極或中性。假設要分析社交媒體上用戶對某一產品的評價情感,以下哪種方法在處理大量非結構化文本數(shù)據(jù)時效果較好?()A.基于詞典的方法B.基于機器學習的分類方法C.基于深度學習的神經(jīng)網(wǎng)絡方法D.人工閱讀和判斷3、人工智能在醫(yī)療影像診斷中的應用不斷發(fā)展。假設一個醫(yī)院要引入人工智能輔助診斷系統(tǒng)來檢測癌癥。以下關于該應用的描述,哪一項是錯誤的?()A.能夠提高診斷的準確性和效率,減少漏診和誤診的情況B.可以與醫(yī)生的經(jīng)驗和判斷相結合,提供更全面的診斷依據(jù)C.人工智能診斷系統(tǒng)可以完全取代病理醫(yī)生的工作,獨立做出診斷結論D.需要經(jīng)過嚴格的臨床試驗和驗證,確保其安全性和有效性4、在人工智能的自動駕駛場景中,車輛需要與周圍的其他車輛和基礎設施進行有效的通信和協(xié)作。假設要實現(xiàn)車輛之間的安全、高效的信息交互,以下哪種通信技術和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車聯(lián)網(wǎng)專用短程通信(DSRC)D.Wi-Fi通信5、在人工智能的情感分析任務中,比如分析社交媒體上用戶對某一產品的態(tài)度是積極還是消極,以下哪種特征提取方法可能會產生重要影響?()A.基于詞袋模型B.基于詞嵌入C.基于語法結構D.基于語義網(wǎng)絡6、在人工智能的圖像生成任務中,變分自編碼器(VAE)是一種常用的模型。假設要使用VAE生成新的圖像,以下關于VAE的描述,正確的是:()A.VAE通過學習數(shù)據(jù)的潛在分布來生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質量不如生成對抗網(wǎng)絡(GAN),因此在實際應用中逐漸被淘汰C.VAE可以在生成圖像的同時對圖像進行壓縮和編碼,節(jié)省存儲空間D.VAE只能用于生成簡單的圖像,如數(shù)字和幾何圖形,無法生成復雜的自然圖像7、在人工智能的模型訓練中,超參數(shù)的調整是一個關鍵步驟。假設正在訓練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(RNN),以下關于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經(jīng)驗和直覺,隨機選擇一組超參數(shù)進行試驗B.使用網(wǎng)格搜索或隨機搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關研究和實踐中常用的超參數(shù)設置D.利用自動超參數(shù)調整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)8、在人工智能的圖像超分辨率任務中,假設需要將低分辨率圖像恢復為高分辨率圖像,同時保持圖像的細節(jié)和清晰度。以下哪種方法通常能夠取得較好的效果?()A.基于深度學習的超分辨率模型,學習圖像的特征和模式B.傳統(tǒng)的插值方法,如雙線性插值C.對低分辨率圖像進行簡單的放大處理D.隨機生成高分辨率圖像9、人工智能在金融領域的應用包括風險評估、欺詐檢測等。假設一家銀行要利用人工智能進行客戶信用評估。以下關于人工智能在金融領域應用的描述,哪一項是不正確的?()A.可以通過分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來評估信用風險B.人工智能模型能夠自適應地學習和更新,以適應不斷變化的金融市場環(huán)境C.人工智能的決策結果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機構降低成本,提高風險控制的準確性和效率10、在人工智能的文本生成任務中,假設要生成一篇邏輯連貫、語言通順的文章,以下關于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學習的文本生成模型可以學習語言的模式和規(guī)律,但可能存在重復和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當?shù)奈恼?1、在人工智能的發(fā)展過程中,可解釋性是一個重要的問題。假設一個深度學習模型在醫(yī)療診斷中做出了關鍵決策,但無法解釋其決策的依據(jù)。這可能會帶來哪些潛在的風險?()A.醫(yī)生可能無法信任模型的結果B.模型的準確率可能會下降C.模型的訓練時間可能會增加D.模型的復雜度可能會降低12、在人工智能的發(fā)展中,倫理和社會問題日益受到關注。假設一個人工智能系統(tǒng)被用于招聘決策,以下關于這種應用可能帶來的問題,正確的是:()A.人工智能系統(tǒng)能夠完全消除招聘中的人為偏見,保證公平公正B.由于數(shù)據(jù)偏差和算法不透明,可能導致不公平的招聘結果和歧視C.企業(yè)無需對人工智能招聘系統(tǒng)的決策負責,因為是算法自動做出的決策D.人工智能招聘系統(tǒng)不會對求職者的個人隱私造成任何威脅13、人工智能中的遷移學習是一種有效的技術手段。以下關于遷移學習的描述,不正確的是()A.遷移學習可以利用已有的預訓練模型和知識,在新的任務和數(shù)據(jù)上進行微調B.遷移學習能夠減少新任務中的數(shù)據(jù)標注工作量和訓練時間C.遷移學習只能在相似的領域和任務中應用,無法跨越不同的領域D.合理運用遷移學習可以提高模型的泛化能力和性能14、人工智能在農業(yè)領域的應用具有很大的潛力。以下關于人工智能在農業(yè)應用的描述,不正確的是()A.可以通過圖像識別技術監(jiān)測農作物的生長狀況和病蟲害B.能夠根據(jù)氣象數(shù)據(jù)和土壤條件進行精準的灌溉和施肥決策C.人工智能在農業(yè)中的應用受限于農村地區(qū)的基礎設施和技術水平,發(fā)展緩慢D.借助智能傳感器和物聯(lián)網(wǎng)技術,實現(xiàn)農業(yè)生產的智能化管理15、在人工智能的圖像超分辨率重建任務中,例如將低分辨率圖像恢復為高分辨率圖像,以下哪種技術和網(wǎng)絡結構可能會發(fā)揮重要作用?()A.殘差網(wǎng)絡B.注意力機制C.對抗生成網(wǎng)絡D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺的研究內容和應用。2、(本題5分)談談人工智能在供應鏈管理中的應用。3、(本題5分)簡述人工智能在智能質量檢測中的技術。4、(本題5分)談談人工智能在制造業(yè)中的應用。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python中的PyTorch框架,構建一個基于圖注意力網(wǎng)絡(GAT)的模型,對知識圖譜中的關系進行預測。2、(本題5分)利用Python的Scikit-learn庫,實現(xiàn)一個決策樹算法對乳腺癌數(shù)據(jù)集進行分類。詳細展示數(shù)據(jù)預處理、特征選擇、模型訓練和預測的過程,并分析模型的性能和決策路徑。3、(本題5分)使用機器學習算法對地震數(shù)據(jù)進行分析,預測地震的發(fā)生時間和地點,為防災減災提供支持。4、(本題5分)運用自然語言處理技術,對學術論文進行自動摘要和關鍵詞提取。提高學術研究的效率和文獻檢索的準確性。5、(本題5分)利用Python的TensorFlow庫,構建一個對抗自編碼器(AAE),用于數(shù)據(jù)的生成和特征提取,分析其在降維方面的效果。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)分析一款利用人工

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論