2025屆盤錦市重點中學八年級數(shù)學第二學期期末聯(lián)考試題含解析_第1頁
2025屆盤錦市重點中學八年級數(shù)學第二學期期末聯(lián)考試題含解析_第2頁
2025屆盤錦市重點中學八年級數(shù)學第二學期期末聯(lián)考試題含解析_第3頁
2025屆盤錦市重點中學八年級數(shù)學第二學期期末聯(lián)考試題含解析_第4頁
2025屆盤錦市重點中學八年級數(shù)學第二學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆盤錦市重點中學八年級數(shù)學第二學期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,已知正比例函數(shù)y1=ax與一次函數(shù)y2=-12A.a(chǎn)>0 B.b<0C.當x<0時,y1>y2 D.2.在下列各圖中,可以由題目條件得出∠1=∠2的圖形個數(shù)為()A.1 B.2 C.3 D.43.計算:()A.5 B.7 C.-5 D.-74.已知:菱形ABCD中,對角線AC與BD相交于點O,OE∥DC交BC于點E,AD=6cm,則OE的長為【】A.6cmB.4cmC.3cmD.2cm5.如圖1,在△ABC和△DEF中,AB=AC=m,DE=DF=n,∠BAC=∠EDF,點D與點A重合,點E,F(xiàn)分別在AB,AC邊上,將圖1中的△DEF沿射線AC的方向平移,使點D與點C重合,得到圖2,下列結(jié)論不正確的是()A.△DEF平移的距離是m B.圖2中,CB平分∠ACEC.△DEF平移的距離是n D.圖2中,EF∥BC6.分別以下列三條線段組成的三角形不是直角三角形的是()A.3、4、5 B.6、8、10 C.1、1、 D.6、7、87.如果反比例函數(shù)的圖象在所在的每個象限內(nèi)y都是隨著x的增大而減小,那么m的取值范圍是()A.m> B.m< C.m≤ D.m≥8.如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形()A., B.,C., D.,9.等邊三角形的邊長為2,則該三角形的面積為()A.4 B. C.2 D.310.如果關(guān)于的分式方程有增根,則增根的值為()A.0 B.-1 C.0或-1 D.不存在二、填空題(每小題3分,共24分)11.當時,__.12.函數(shù)的自變量x的取值范圍是.13.若與最簡二次根式能合并成一項,則a=______.14.若已知a、b為實數(shù),且+2=b+4,則.15.如圖,長方形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點A為圓心,AC的長為半徑作弧交數(shù)軸于點M,則點M表示的數(shù)為__________.16.如圖,在平面直角坐標系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標為_____.17.“折竹抵地”問題源自《九章算術(shù)》中,即:今有竹高一丈,末折抵地,去本四尺,問折者高幾何?意思是:一根竹子,原高一丈,一陣風將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠,則折斷后的竹子高度為_____尺.18.若2x﹣5沒有平方根,則x的取值范圍為_____.三、解答題(共66分)19.(10分)如圖,矩形ABCD的對角線相交于點O,DE∥AC,CE∥BD,求證:四邊形OCED是菱形.20.(6分)如圖,在正方形網(wǎng)格中,每一個小正方形的邊長為1.△ABC的三個頂點都在格點上,A、C的坐標分別是(﹣4,6),(﹣1,4).(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系;(2)請畫出△ABC向右平移6個單位的△A1B1C1,并寫出C1的坐標;(3)請畫出△ABC關(guān)于原點O對稱的△A2B2C2,并寫出點C2的坐標.21.(6分)某校開展愛“我容城,創(chuàng)衛(wèi)同行”的活動,倡議學生利用雙休日在浜江公園參加評選活動,為了了解同學們勞動時間,學校隨機調(diào)查了部分同學勞動的時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:(1)將條形統(tǒng)計圖補充完整;(2)抽查的學生勞動時間的眾數(shù)為______,中位數(shù)為_______;(3)已知全校學生人數(shù)為1200人,請估算該校學生參加義務(wù)勞動2小時的有多少人?22.(8分)如圖,在正方形ABCD中,點E為AB上的點(不與A,B重合),△ADE與△FDE關(guān)于DE對稱,作射線CF,與DE的延長線相交于點G,連接AG,(1)當∠ADE=15°時,求∠DGC的度數(shù);(2)若點E在AB上移動,請你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請證明你的結(jié)論;若會發(fā)生變化,請說明理由;(3)如圖2,當點F落在對角線BD上時,點M為DE的中點,連接AM,F(xiàn)M,請你判斷四邊形AGFM的形狀,并證明你的結(jié)論。23.(8分)某中學八⑴班、⑵班各選5名同學參加“愛我中華”演講比賽,其預賽成績(滿分100分)如圖所示:(1)根據(jù)上圖填寫下表:平均數(shù)中位數(shù)眾數(shù)八(1)班8585八(2)班8580(2)根據(jù)兩班成績的平均數(shù)和中位數(shù),分析哪班成績較好?(3)如果每班各選2名同學參加決賽,你認為哪個班實力更強些?請說明理由.24.(8分)如圖,長的樓梯的傾斜角為60°,為了改善樓梯的安全性能,準備重新建造樓梯,使其傾斜角為45°,求調(diào)整后的樓梯的長.25.(10分)某房地產(chǎn)開發(fā)公司計劃建A、B兩種戶型的住房共80套,該公司所籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于建房,兩種戶型的建房成本和售價如下表:AB成本(萬元/套)2528售價(萬元/套)3034(1)該公司對這兩種戶型住房有哪幾種建房方案?(2)該公司如何建房獲得利潤最大?(3)根據(jù)市場調(diào)查,每套B型住房的售價不會改變,每套A型住房的售價將會提高a萬元(a>0),且所建的兩種住房可全部售出,該公司又將如何建房獲得利潤最大?(注:利潤=售價-成本)26.(10分)已知:如圖,在中,,以點為圓心,的長為半徑畫弧,交線段于點,以點為圓心,長為半徑畫弧,交線段與點.(1)根據(jù)題意用尺規(guī)作圖補全圖形(保留作圖痕跡);(2)設(shè)①線段的長度是方程的一個根嗎?并說明理由.②若線段,求的值.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】

利用兩函數(shù)圖象結(jié)合與坐標軸交點進而分別分析得出答案.【詳解】∵y1∴a>0,故A正確;∵y2=-1∴b>0,故B錯誤;∵正比例函數(shù)y1∴當x<0時,y1<y當x>2時,y1>y故選:A.【點睛】此題考查一次函數(shù)和正比例函數(shù)的圖象與性質(zhì),解題關(guān)鍵在于結(jié)合函數(shù)圖象進行判斷.2、C【解析】

根據(jù)等腰三角形的性質(zhì)對第一個圖形進行判斷,根據(jù)對頂角相等對第1個圖進行判斷;根據(jù)平行線的性質(zhì)和對頂角相等對第3個圖進行判斷;根據(jù)三角形外角性質(zhì)對第4個圖進行判斷.【詳解】解:在第一個圖中,∵AB=AC,∴∠1=∠1;在第二個圖中,∠1=∠1;在第三個圖中,∵a∥b,∴∠1=∠3,而∠1=∠3,∴∠1=∠1;在第四個圖中,∠1>∠1.故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),對頂角相等,正確的識別圖形是解題的關(guān)鍵.3、A【解析】

先利用二次根式的性質(zhì)進行化簡,然后再進行減法運算即可.【詳解】=6-1=5,故選A.【點睛】本題考查了二次根式的化簡,熟練掌握是解題的關(guān)鍵.4、C【解析】∵四邊形ABCD是菱形,∴OB=OD,CD=AD=6cm,∵OE∥DC,∴OE是△BCD的中位線。∴OE=CD=3cm。故選C。5、C【解析】

根據(jù)平移的性質(zhì)即可得到結(jié)論.【詳解】∵AD=AC=m,∴△DEF平移的距離是m,故A正確,C錯誤,∵AB=AC,∴∠ACB=∠ABC,∵DE∥AB,∴∠EDB=∠ABC,∴∠ACB=∠ECB,∴CB平分∠ACE,故B正確;由平移的性質(zhì)得到EF∥BC,故D正確.故選C.【點睛】本題考查了平移的性質(zhì),等腰三角形的性質(zhì),平行線的性質(zhì),熟練正確平移的性質(zhì)是解題的關(guān)鍵.6、D【解析】

根據(jù)勾股定理的逆定理可知,兩較短邊的平方和等于最長邊的平方,逐項驗證即可.【詳解】A.,可組成直角三角形;B.,可組成直角三角形;C.,可組成直角三角形;D.,不能組成直角三角形.故選D.【點睛】本題考查勾股定理的逆定理,熟練掌握兩較短邊的平方和等于最長邊的平方是解題的關(guān)鍵.7、B【解析】

根據(jù)反比例函數(shù)的性質(zhì)可得1-2m>0,再解不等式即可.【詳解】解:有題意得:反比例函數(shù)的圖象在所在的每個象限內(nèi)y都是隨著x的增大而減小,1-2m>0,解得:m<,故選:B.【點睛】此題主要考查了反比例函數(shù)的性質(zhì).對于反比例函數(shù)y=(k≠0),當k>0時,在每一個象限內(nèi),函數(shù)值y隨自變量x的增大而減小;當k<0時,在每一個象限內(nèi),函數(shù)值y隨自變量x增大而增大.8、B【解析】

根據(jù)平行四邊形的判定方法,對每個選項進行篩選可得答案.【詳解】A、∵OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,故A選項不符合題意;B、AB=CD,AO=CO不能證明四邊形ABCD是平行四邊形,故本選項符合題意;C、∵AD//BC,AD=BC,∴四邊形ABCD是平行四邊形,故C選項不符合題意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四邊形ABCD是平行四邊形,故D選項不符合題意,故選B.【點睛】本題主要考查平行四邊形的判定問題,熟練掌握平行四邊形的性質(zhì),能夠熟練判定一個四邊形是否為平行四邊形.平行四邊形的判定:①兩組對邊分別平行的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③兩組對角分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤一組對邊平行且相等的四邊形是平行四邊形.9、B【解析】∵等邊三角形高線即中點,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC?AD=×2×=,故選B.10、A【解析】

先把分式方程化成整式方程,再解整式方程求出x的值,根據(jù)方程有增根得出或,解出k的值即可得出答案.【詳解】又方程有增根∴或無解或k=0∴k=0∴增根的值為0故答案選擇A.【點睛】本題考查的是分式方程的增根問題,屬于基礎(chǔ)題型,解題關(guān)鍵是根據(jù)增根得出整式方程有解,而分式方程無解,即整式方程求出的解使得分式方程的分母等于0.二、填空題(每小題3分,共24分)11、【解析】

將x的值代入x2-2x+2028=(x-1)2+2027,根據(jù)二次根式的運算法則計算可得.【詳解】解:當x=1-時,x2-2x+2028=(x-1)2+2027=(1--1)2+2027=(-)2+2027,=3+2027=1,故答案為:1.【點睛】本題主要考查二次根式的化簡求值,解題的關(guān)鍵是掌握二次根式的性質(zhì)和運算法則及完全平方公式.12、.【解析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內(nèi)有意義,必須.13、2【解析】

根據(jù)二次根式能合并,可得同類二次根式,根據(jù)最簡二次根式的被開方數(shù)相同,可得關(guān)于a的方程,根據(jù)解方程,可得答案.【詳解】解:=2,由最簡二次根式與能合并成一項,得a-1=1.解得a=2.故答案為:2.【點睛】本題考查同類二次根式和最簡二次根式的概念,同類二次根式是化為最簡二次根式后,被開方數(shù)相同的二次根式.14、1【解析】試題分析:因為+2=b+4有意義,所以,所以a=5,所以b+4=0,所以b=-4,所以a+b=5-4=1.考點:二次根式.15、【解析】

根據(jù)勾股定理,可得AC的長,根據(jù)圓的性質(zhì),可得答案.【詳解】由題意得故可得,又∵點B的坐標為2∴M點的坐標是,故答案為:.【點睛】此題考查勾股定理,解題關(guān)鍵在于結(jié)合實數(shù)與數(shù)軸解決問題.16、(2,3)【解析】

作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點A、B的坐標分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點A′的坐標為(2,3).故答案為(2,3).【點睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點的坐標的確定.解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.17、4.1.【解析】

根據(jù)題意結(jié)合勾股定理得出折斷處離地面的長度即可.【詳解】解:設(shè)折斷處離地面的高度OA是x尺,根據(jù)題意可得:x1+41=(10﹣x)1,解得:x=4.1,答:折斷處離地面的高度OA是4.1尺.故答案為:4.1.【點睛】本題主要考查了勾股定理的應(yīng)用,在本題中理解題意,知道柱子折斷后剛好構(gòu)成一個直角三角形是解題的關(guān)鍵.18、x<.【解析】

由負數(shù)沒有平方根得出關(guān)于x的不等式,解之可得.【詳解】由題意知2x﹣5<0,解得x<,故答案為:x<.【點睛】此題考查平方根的性質(zhì),正數(shù)有兩個平方根它們互為相反數(shù),零的平方根是它本身,負數(shù)沒有平方根.三、解答題(共66分)19、見解析【解析】

首先根據(jù)兩對邊互相平行的四邊形是平行四邊形證明四邊形OCED是平行四邊形,再根據(jù)矩形的性質(zhì)可得OC=OD,即可利用一組鄰邊相等的平行四邊形是菱形判定出結(jié)論.【詳解】證明:∵DE∥AC,CE∥BD,∴四邊形OCED是平行四邊形.∵四邊形ABCD是矩形,∴OC=OD=AC=BD∴四邊形OCED是菱形.20、(1)見解析;(2)見解析;(5,4);(3)見解析;(1,-4).【解析】

(1)根據(jù)A、C兩點的坐標建立平面直角坐標系即可;

(2)根據(jù)圖形平移的性質(zhì)畫出△A1B1C1′,然后寫出點C1坐標;

(3)分別作出點A、B、C關(guān)于原點O的對稱點A2、B2、C2,連接A2、B2、C2即可得到△ABC關(guān)于原點O對稱的△A2B2C2,然后寫出點C2坐標.【詳解】解:(1)如圖,建立平面直角坐標系;(2)如圖,△A1B1C1為所作;點C1的坐標為(5,4);(3)如圖,△A2B2C2為所作;點C2的坐標為(1,-4).故答案為:(1)見解析;(2)見解析;(5,4);(3)見解析;(1,-4).【點睛】本題考查旋轉(zhuǎn)變換及平移變換,熟知圖形經(jīng)過旋轉(zhuǎn)及平移后與原圖形全等是解題的關(guān)鍵.21、(1)見解析(2)1.5、1.5(3)216【解析】

(1)根據(jù)學生勞動“1小時”的人數(shù)除以占的百分比,求出總?cè)藬?shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)確定出學生勞動時間的眾數(shù)與中位數(shù)即可;(3)總?cè)藬?shù)乘以樣本中參加義務(wù)勞動2小時的百分比即可得.【詳解】(1)根據(jù)題意得:30÷30%=100(人),∴學生勞動時間為“1.5小時”的人數(shù)為100?(12+30+18)=40(人),補全統(tǒng)計圖,如圖所示:(2)根據(jù)題意得:抽查的學生勞動時間的眾數(shù)為1.5小時、中位數(shù)為1.5小時,故答案為:1.5、1.5;(3)1200×18%=216,答:估算該校學生參加義務(wù)勞動2小時的有216人【點睛】此題考查扇形統(tǒng)計圖,條形統(tǒng)計圖,中位數(shù),眾數(shù),解題關(guān)鍵在于看懂圖中數(shù)據(jù)22、(1)∠DGC=45°;(2)∠DGC=45°不會變化;(3)四邊形AGFM是正方形【解析】

(1)根據(jù)對稱性及正方形性質(zhì)可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度數(shù);(2)由(1)知△DFC為等腰三角形,得出DF=DC,求出∠DFC=45o+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45o;(3)證明FG=MF=MA=AG,∠AGF=90o,即可得出結(jié)論.【詳解】(1)△FDE與ADE關(guān)于DE對稱∴△FDE≌△ADE∴∠FDE=∠ADE=15o,AD=FD∴∠ADF=2∠FDE=30o∵ABCD為正方形∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90o∴∠FDC=∠ADC-∠ADF=60o∴△DFC為等邊三角形∴∠DFC=60o∵∠DFC為△DGF外角∴∠DFC=∠FDE+∠DGC∴∠DGC=∠DFC-∠FDE=60-15o=45o(2)不變.證明:由(1)知△DFC為等腰三角形,DF=DC∴∠DFC=∠DCF=(180o-∠CDF)=90o-∠CDF①∵∠CDF=90o-∠ADF=90o-2∠EDF②將②代入①得∠DFC=45o+∠EDF∵∠DFC=∠DGC+∠EDF∴∠DGC=45o(3)四邊形AMFG為正方形.證明:∵M為Rt△ADE中斜邊DE的中點∴AM=DE∵M為Rt△FED中斜邊DE的中點∴FM=DE=AM=MD由(1)知△AED≌△FED∴AD=DF,∠ADG=∠FDG△ADG與△FDG中,AD=DF,∠ADG=∠FDG,DG=DG∴△ADG≌△FDG,由(2)知∠DGC=45o∴∠DGA=∠DGF=45o,AG=FG,∠AGF=∠DGA+∠DGF=90o∵DB為正方形對角線,∴∠ADB=∠45o,∵∠ADG=∠GDF=∠ADB=22.5o∵DM=FM∴∠GDF=∠MFD=22.5o∵∠GMF=∠GDF+∠MFD=45o∴∠GMF=∠DGF=45o∴MF=FG∴FG=MF=MA=AG,∠AGF=90o∴四邊形AMFG為正方形?!军c睛】本題主要考查了正方形的性質(zhì)與判定.解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.23、(1)85,1;(2)八⑴班的成績較好;(3)八⑵班實力更強些,理由見解析【解析】

(1)根據(jù)中位數(shù)和眾數(shù)的定義填空.

(2)根據(jù)平均數(shù)和中位數(shù)比較兩個班的成績.

(3)比較每班前兩名選手的成績即可.【詳解】解:(1)由條形圖數(shù)據(jù)可知:中位數(shù)填85,眾數(shù)填1.故答案為:85,1;(2)因兩班平均數(shù)相同,但八(1)班的中位數(shù)高,所以八(1)班的成績較好.(3)如果每班各選2名選手參加決賽,我認為八(2)班實力更強些.因為,雖然兩班的平均數(shù)相同,但在前兩名的高分區(qū)中八(2)班的成績?yōu)?分和1分,而八(1)班的成績?yōu)?分和85分.【點睛】本題考查了運用平均數(shù),中位數(shù)與眾數(shù)解決實際問題的能力.平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).24、【解析】

在中,,∴∴,∴在中,,∴∴.25、(1)三種建房方案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論