2024屆四川省樂山七中學(xué)中考數(shù)學(xué)模擬試卷含解析_第1頁
2024屆四川省樂山七中學(xué)中考數(shù)學(xué)模擬試卷含解析_第2頁
2024屆四川省樂山七中學(xué)中考數(shù)學(xué)模擬試卷含解析_第3頁
2024屆四川省樂山七中學(xué)中考數(shù)學(xué)模擬試卷含解析_第4頁
2024屆四川省樂山七中學(xué)中考數(shù)學(xué)模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆四川省樂山七中學(xué)中考數(shù)學(xué)模擬精編試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.平面直角坐標(biāo)系內(nèi)一點(diǎn)關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)是()A. B. C. D.2.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>43.a(chǎn)≠0,函數(shù)y=與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是()A. B.C. D.4.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運(yùn)動員射擊一次,命中靶心C.任意畫一個(gè)三角形,其內(nèi)角和是180°D.拋一枚硬幣,落地后正面朝上5.一個(gè)布袋內(nèi)只裝有1個(gè)黑球和2個(gè)白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個(gè)球后放回?cái)噭?再隨機(jī)摸出一個(gè)球,則兩次摸出的球都是黑球的概率是()A. B. C. D.6.十九大報(bào)告指出,我國目前經(jīng)濟(jì)保持了中高速增長,在世界主要國家中名列前茅,國內(nèi)生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10137.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標(biāo)系中的大致圖象是()A. B. C. D.8.若分式的值為0,則x的值為()A.-2 B.0 C.2 D.±29.如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點(diǎn)O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時(shí)駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點(diǎn)O的距離y(m)與時(shí)間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯(cuò)誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m10.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點(diǎn),點(diǎn)C是劣弧的中點(diǎn),若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.一元二次方程x(x﹣2)=x﹣2的根是_____.12.若點(diǎn)M(k﹣1,k+1)關(guān)于y軸的對稱點(diǎn)在第四象限內(nèi),則一次函數(shù)y=(k﹣1)x+k的圖象不經(jīng)過第象限.13.如果關(guān)于x的方程x2+2ax﹣b2+2=0有兩個(gè)相等的實(shí)數(shù)根,且常數(shù)a與b互為倒數(shù),那么a+b=_____.14.如圖,在Rt△ABC中,AC=4,BC=3,將Rt△ABC以點(diǎn)A為中心,逆時(shí)針旋轉(zhuǎn)60°得到△ADE,則線段BE的長度為_____.15.如圖,點(diǎn)A是反比例函數(shù)y=﹣(x<0)圖象上的點(diǎn),分別過點(diǎn)A向橫軸、縱軸作垂線段,與坐標(biāo)軸恰好圍成一個(gè)正方形,再以正方形的一組對邊為直徑作兩個(gè)半圓,其余部分涂上陰影,則陰影部分的面積為______.16.如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為a,則a的值是____.三、解答題(共8題,共72分)17.(8分)如圖1,點(diǎn)P是平面直角坐標(biāo)系中第二象限內(nèi)的一點(diǎn),過點(diǎn)P作PA⊥y軸于點(diǎn)A,點(diǎn)P繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到點(diǎn)P',我們稱點(diǎn)P'是點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”.(1)若點(diǎn)P(﹣4,2),則點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的坐標(biāo)為;若點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的坐標(biāo)為(﹣5,16)則點(diǎn)P的坐標(biāo)為;若點(diǎn)P(a,b),則點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的坐標(biāo)為;(2)如圖2,點(diǎn)Q是線段AP'上的一點(diǎn)(不與A、P'重合),點(diǎn)Q的“旋轉(zhuǎn)對應(yīng)點(diǎn)”是點(diǎn)Q',連接PP'、QQ',求證:PP'∥QQ';(3)點(diǎn)P與它的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的連線所在的直線經(jīng)過點(diǎn)(,6),求直線PP'與x軸的交點(diǎn)坐標(biāo).18.(8分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.(1)求m的值及一次函數(shù)解析式;(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).19.(8分)閱讀材料:已知點(diǎn)和直線,則點(diǎn)P到直線的距離d可用公式計(jì)算.例如:求點(diǎn)到直線的距離.

解:因?yàn)橹本€可變形為,其中,所以點(diǎn)到直線的距離為:.根據(jù)以上材料,求:點(diǎn)到直線的距離,并說明點(diǎn)P與直線的位置關(guān)系;已知直線與平行,求這兩條直線的距離.20.(8分)某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價(jià)比每臺甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺.求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺,乙種品牌空調(diào)的售價(jià)為3500元/臺.請您幫該商場設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.21.(8分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?22.(10分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點(diǎn),且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.23.(12分)先化簡,后求值:,其中.24.如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)“平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y),即關(guān)于原點(diǎn)的對稱點(diǎn),橫縱坐標(biāo)都變成相反數(shù)”解答.【詳解】解:根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn),∴點(diǎn)A(-2,3)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(2,-3),故選D.【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于原點(diǎn)對稱的特征,解決本題的關(guān)鍵是要熟練掌握點(diǎn)關(guān)于原點(diǎn)對稱的特征.2、B【解析】

根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,列不等式求解.【詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點(diǎn)睛】本題主要考查函數(shù)自變量的取值范圍的知識點(diǎn),注意:二次根式的被開方數(shù)是非負(fù)數(shù).3、D【解析】

分a>0和a<0兩種情況分類討論即可確定正確的選項(xiàng)【詳解】當(dāng)a>0時(shí),函數(shù)y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒有符合的選項(xiàng),當(dāng)a<0時(shí),函數(shù)y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負(fù)半軸,D選項(xiàng)符合;故選D.【點(diǎn)睛】本題考查了反比例函數(shù)的圖象及二次函數(shù)的圖象的知識,解題的關(guān)鍵是根據(jù)比例系數(shù)的符號確定其圖象的位置,難度不大.4、C【解析】分析:必然事件就是一定發(fā)生的事件,依據(jù)定義即可作出判斷.詳解:A、三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等,三角形的內(nèi)心到三邊的距離相等,是不可能事件,故本選項(xiàng)不符合題意;B、某射擊運(yùn)動員射擊一次,命中靶心是隨機(jī)事件,故本選項(xiàng)不符合題意;C、三角形的內(nèi)角和是180°,是必然事件,故本選項(xiàng)符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機(jī)事件,故本選項(xiàng)不符合題意;故選C.點(diǎn)睛:解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機(jī)摸出一個(gè)球后放回?cái)噭?,再隨機(jī)摸出一個(gè)球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點(diǎn):用列表法求概率.6、B【解析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點(diǎn)睛:本題考查了科學(xué)計(jì)數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).7、D【解析】

根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點(diǎn),應(yīng)在二、四象限.故選D【點(diǎn)睛】考核知識點(diǎn):反比例函數(shù)圖象.8、C【解析】由題意可知:,解得:x=2,故選C.9、C【解析】分析:結(jié)合2個(gè)圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時(shí)間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯(cuò)誤.D.立交橋總長為:故正確.故選C.點(diǎn)睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.10、C【解析】

由點(diǎn)C是劣弧AB的中點(diǎn),得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點(diǎn)C是劣弧AB的中點(diǎn),∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當(dāng)P在OC的左側(cè)時(shí),PB=3+2=5,∴PB的長度為1或5.故選C.【點(diǎn)睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1或1【解析】

移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可得答案.【詳解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案為:1或1.【點(diǎn)睛】本題考查了解一元二次方程的應(yīng)用,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.12、一【解析】試題分析:首先確定點(diǎn)M所處的象限,然后確定k的符號,從而確定一次函數(shù)所經(jīng)過的象限,得到答案.∵點(diǎn)M(k﹣1,k+1)關(guān)于y軸的對稱點(diǎn)在第四象限內(nèi),∴點(diǎn)M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k經(jīng)過第二、三、四象限,不經(jīng)過第一象限考點(diǎn):一次函數(shù)的性質(zhì)13、±1.【解析】

根據(jù)根的判別式求出△=0,求出a1+b1=1,根據(jù)完全平方公式求出即可.【詳解】解:∵關(guān)于x的方程x1+1ax-b1+1=0有兩個(gè)相等的實(shí)數(shù)根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常數(shù)a與b互為倒數(shù),∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案為±1.【點(diǎn)睛】本題考查了根的判別式和解高次方程,能得出等式a1+b1=1和ab=1是解此題的關(guān)鍵.14、【解析】

連接CE,作EF⊥BC于F,根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到∠CAE=60°,AC=AE,根據(jù)等邊三角形的性質(zhì)得到CE=AC=4,∠ACE=60°,根據(jù)直角三角形的性質(zhì)、勾股定理計(jì)算即可.【詳解】解:連接CE,作EF⊥BC于F,

由旋轉(zhuǎn)變換的性質(zhì)可知,∠CAE=60°,AC=AE,

∴△ACE是等邊三角形,

∴CE=AC=4,∠ACE=60°,

∴∠ECF=30°,

∴EF=CE=2,

由勾股定理得,CF==,

∴BF=BC-CF=,

由勾股定理得,BE==,

故答案為:.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角是解題的關(guān)鍵.15、4﹣π【解析】

由題意可以假設(shè)A(-m,m),則-m2=-4,求出點(diǎn)A坐標(biāo)即可解決問題.【詳解】由題意可以假設(shè)A(-m,m),則-m2=-4,∴m=≠±2,∴m=2,∴S陰=S正方形-S圓=4-π,故答案為4-π.【點(diǎn)睛】本題考查反比例函數(shù)圖象上的點(diǎn)的特征、正方形的性質(zhì)、圓的面積公式等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題16、【解析】

根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長,利用勾股定理求出斜邊的長,即知表示0的點(diǎn)和A之間的線段的長,進(jìn)而可推出A的坐標(biāo).【詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【點(diǎn)睛】此題主要考查了實(shí)數(shù)與數(shù)軸之間的對應(yīng)關(guān)系,其中主要利用了:已知兩點(diǎn)間的距離,求較大的數(shù),就用較小的數(shù)加上兩點(diǎn)間的距離.三、解答題(共8題,共72分)17、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點(diǎn)坐標(biāo)(﹣,0)【解析】

(1)①當(dāng)P(-4,2)時(shí),OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進(jìn)而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當(dāng)P'(-5,16)時(shí),確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當(dāng)P(a,b)時(shí),同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進(jìn)而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【詳解】解:(1)如圖1,①當(dāng)P(﹣4,2)時(shí),∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當(dāng)P'(﹣5,16)時(shí),在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當(dāng)P(a,b)時(shí),同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點(diǎn)Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設(shè)yPP'=kx+b',由題意知,k=,∵直線經(jīng)過點(diǎn)(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點(diǎn)坐標(biāo)(﹣,0).【點(diǎn)睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),待定系數(shù)法,解本題的關(guān)鍵是理解新定義.18、(1)m=2;y=x+;(2)P點(diǎn)坐標(biāo)是(﹣,).【解析】

(1)利用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式;

(2)設(shè)點(diǎn)P的坐標(biāo)為根據(jù)面積公式和已知條件列式可求得的值,并根據(jù)條件取舍,得出點(diǎn)P的坐標(biāo).【詳解】解:(1)∵反比例函數(shù)的圖象過點(diǎn)∴∵點(diǎn)B(﹣1,m)也在該反比例函數(shù)的圖象上,∴﹣1?m=﹣2,∴m=2;設(shè)一次函數(shù)的解析式為y=kx+b,由y=kx+b的圖象過點(diǎn)A,B(﹣1,2),則解得:∴一次函數(shù)的解析式為(2)連接PC、PD,如圖,設(shè)∵△PCA和△PDB面積相等,∴解得:∴P點(diǎn)坐標(biāo)是【點(diǎn)睛】本題考查待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,熟練掌握待定系數(shù)法是解題的關(guān)鍵.19、(1)點(diǎn)P在直線上,說明見解析;(2).【解析】

解:(1)求:(1)直線可變?yōu)?,說明點(diǎn)P在直線上;(2)在直線上取一點(diǎn)(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.20、(1)甲種品牌的進(jìn)價(jià)為1500元,乙種品牌空調(diào)的進(jìn)價(jià)為1800元;(2)當(dāng)購進(jìn)甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時(shí),售完后利潤最大,最大為12100元【解析】

(1)設(shè)甲種品牌空調(diào)的進(jìn)貨價(jià)為x元/臺,則乙種品牌空調(diào)的進(jìn)貨價(jià)為1.2x元/臺,根據(jù)數(shù)量=總價(jià)÷單價(jià)可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;(2)設(shè)購進(jìn)甲種品牌空調(diào)a臺,所獲得的利潤為y元,則購進(jìn)乙種品牌空調(diào)(10-a)臺,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總價(jià)不超過16000元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進(jìn)數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)由(1)設(shè)甲種品牌的進(jìn)價(jià)為x元,則乙種品牌空調(diào)的進(jìn)價(jià)為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗(yàn),x=1500是原分式方程的解,乙種品牌空調(diào)的進(jìn)價(jià)為(1+20%)×1500=1800(元).答:甲種品牌的進(jìn)價(jià)為1500元,乙種品牌空調(diào)的進(jìn)價(jià)為1800元;(2)設(shè)購進(jìn)甲種品牌空調(diào)a臺,則購進(jìn)乙種品牌空調(diào)(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設(shè)利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因?yàn)?700<0,則w隨a的增大而減少,當(dāng)a=7時(shí),w最大,最大為12100元.答:當(dāng)購進(jìn)甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時(shí),售完后利潤最大,最大為12100元.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)數(shù)量=總價(jià)÷單價(jià)列出關(guān)于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進(jìn)數(shù)量找出y關(guān)于a的函數(shù)關(guān)系式.21、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費(fèi)用最少;(3)當(dāng)a=3時(shí),三種方案的費(fèi)用一樣,都是2240萬元;當(dāng)a>3時(shí),取m=48時(shí)費(fèi)用最省;當(dāng)0<a<3時(shí),取m=50時(shí)費(fèi)用最省.【解析】試題分析:(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費(fèi)用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關(guān)系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,依題意,得625解得:x=25經(jīng)檢驗(yàn):x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費(fèi)用分別為25萬元,28萬元.(2)設(shè)甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設(shè)提升兩種套房所需要的費(fèi)用為W.所以當(dāng)時(shí),費(fèi)用最少,即第三種方案費(fèi)用最少.(3)在(2)的基礎(chǔ)上有:當(dāng)a=3時(shí),三種方案的費(fèi)用一樣,都是2240萬元.當(dāng)a>3時(shí),取m=48時(shí)費(fèi)用W最省.當(dāng)0<a<3時(shí),取m=50時(shí)費(fèi)用最省.考點(diǎn):1.一次函數(shù)的應(yīng)用;2.分式方程的應(yīng)用;3.一元一次不等式組的應(yīng)用.22、(1)見解析;(2)正方形的邊長為.【解析】

(1)由正方形的性質(zhì)得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結(jié)論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結(jié)果.【詳解】(1)證明:∵四邊形AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論