2024屆四川省廣元市劍閣縣市級名校中考四模數(shù)學試題含解析_第1頁
2024屆四川省廣元市劍閣縣市級名校中考四模數(shù)學試題含解析_第2頁
2024屆四川省廣元市劍閣縣市級名校中考四模數(shù)學試題含解析_第3頁
2024屆四川省廣元市劍閣縣市級名校中考四模數(shù)學試題含解析_第4頁
2024屆四川省廣元市劍閣縣市級名校中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省廣元市劍閣縣市級名校中考四模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.2.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.3.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.4.如圖,小橋用黑白棋子組成的一組圖案,第1個圖案由1個黑子組成,第2個圖案由1個黑子和6個白子組成,第3個圖案由13個黑子和6個白子組成,按照這樣的規(guī)律排列下去,則第8個圖案中共有(

)和黑子.A.37 B.42 C.73 D.1215.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.6.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣27.計算的值為()A. B.-4 C. D.-28.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學記數(shù)法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10119.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.10.下列說法正確的是()A.“買一張電影票,座位號為偶數(shù)”是必然事件B.若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定C.一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5D.一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是5二、填空題(共7小題,每小題3分,滿分21分)11.將一副三角尺如圖所示疊放在一起,則的值是.12.拋物線y=(x+1)2-2的頂點坐標是______.13.如圖,點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,OA=4,則k的值為_____.14.如圖,拋物線交軸于,兩點,交軸于點,點關于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.15.觀光塔是濰坊市區(qū)的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.16.圓錐的底面半徑為3,母線長為5,該圓錐的側(cè)面積為_______.17.一個扇形的圓心角為120°,弧長為2π米,則此扇形的半徑是_____米.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中滿足.19.(5分)某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.根據(jù)以上信息,解答下列問題:(1)這次調(diào)查一共抽取了名學生,其中安全意識為“很強”的學生占被調(diào)查學生總數(shù)的百分比是;(2)請將條形統(tǒng)計圖補充完整;(3)該校有1800名學生,現(xiàn)要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據(jù)調(diào)查結果,估計全校需要強化安全教育的學生約有名.20.(8分)如圖,AB為⊙O直徑,C為⊙O上一點,點D是的中點,DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關系,并證明你的結論;(2)若OF=4,求AC的長度.21.(10分)為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?(2)若該中學要購進“最美東營人”和“最美志愿者”兩款文化衫共90件,總費用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學有哪幾種購買方案?22.(10分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.23.(12分)已知關于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個不相等的實數(shù)根;若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。24.(14分)如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內(nèi)的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側(cè)的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關鍵.2、D【解析】

∵A(,),B(2,)兩點在雙曲線上,∴根據(jù)點在曲線上,點的坐標滿足方程的關系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!3、D【解析】

本題關鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【點睛】本題考查了平面圖形在實際生活中的應用,有良好的空間想象能力過動手能力是解題關鍵.4、C【解析】解:第1、2圖案中黑子有1個,第3、4圖案中黑子有1+2×6=13個,第5、6圖案中黑子有1+2×6+4×6=37個,第7、8圖案中黑子有1+2×6+4×6+6×6=73個.故選C.點睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.5、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.6、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.7、C【解析】

根據(jù)二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.8、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】31600000000=3.16×1.故選:C.【點睛】本題考查科學記數(shù)法,解題的關鍵是掌握科學記數(shù)法的表示.9、A【解析】

分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,

由②,得x<1,

所以不等式組的解集是:2≤x<1.

不等式組的解集在數(shù)軸上表示為:

故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.10、C【解析】

根據(jù)確定性事件、方差、眾數(shù)以及平均數(shù)的定義進行解答即可.【詳解】解:A、“買一張電影票,座位號為偶數(shù)”是隨機事件,此選項錯誤;B、若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,此選項錯誤;C、一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5,此選項正確;D、一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是,此選項錯誤;故選:C.【點睛】本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.12、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數(shù)的性質(zhì).13、﹣4.【解析】

作AN⊥x軸于N,可設A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【詳解】解:作AN⊥x軸于N,如圖所示:∵點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,∴可設A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案為﹣4.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的圖象得交點、勾股定理、反比例函數(shù)解析式的求法;求出點A的坐標是解決問題的關鍵.14、【解析】

根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關于y軸的對稱點D′(﹣1,4)、作點E關于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關于對稱軸的對稱點E的坐標為(2,3),作點D關于y軸的對稱點D′(﹣1,4),作點E關于x軸的對稱點E′(2,﹣3),連結D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點睛】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結合得出答案.15、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.16、15【解析】試題分析:利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式求解.圓錐的側(cè)面積=?2π?3?5=15π.故答案為15π.考點:圓錐的計算.17、1【解析】

根據(jù)弧長公式l=nπr180,可得r=【詳解】解:∵l=nπr∴r=180lnπ=故答案為:1.【點睛】考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=nπr180(弧長為l,圓心角度數(shù)為n,圓的半徑為三、解答題(共7小題,滿分69分)18、,1.【解析】

原式括號中的兩項通分并利用同分母分式的加法法則計算,再與括號外的分式通分后利用同分母分式的加法法則計算,約分得到最簡結果,將變形為,整體代入計算即可.【詳解】解:原式∵,∴,∴原式【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則.19、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數(shù)除以安全意識分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學生人數(shù);用安全意識分“很強”的人數(shù)除以這次調(diào)查一共抽取的學生人數(shù)即可得安全意識“很強”的學生占被調(diào)查學生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學生人數(shù)乘以安全意識分“較強”的人數(shù)所占的百分比即可得安全意識分“較強”的人數(shù),在條形統(tǒng)計圖上畫出即可;(3)用總?cè)藬?shù)乘以安全意識為“淡薄”、“一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統(tǒng)計圖如下:(3)1800×=1人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體.20、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點D是的中點,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據(jù)△ODF與△ABC相似,求得AC的長.AC=821、(1)“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三種方案,具體見解析.【解析】

(1)設“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,根據(jù)若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需11元建立方程組求出其解即可;(2)設購買“最美東營人”文化衫m(xù)件,根據(jù)總費用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,列出不等式組,然后求m的正整數(shù)解.【詳解】(1)設“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,由題意,得,解得:.答:“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)設購買“最美東營人”文化衫m(xù)件,則購買“最美志愿者”文化衫(90-m)件,由題意,得,解得:41<m<1.∵m是整數(shù),∴m=42,43,2.則90-m=48,47,3.答:方案一:購買“最美東營人”文化衫42件,“最美志愿者”文化衫48件;方案二:購買“最美東營人”文化衫43件,“最美志愿者”文化衫47件;方案三:購買“最美東營人”文化衫2件,“最美志愿者”文化衫3件.【點睛】本題考查了二元一次方程組的運用,一元一次不等式組的運用,解決問題的關鍵是讀懂題意,找到關鍵描述語,進而找到所求的量的數(shù)量關系.22、(1)A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺;(2)A種型號的電風扇最多能采購10臺;(3)在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【解析】

(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,根據(jù)3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解;(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺,根據(jù)金額不多余5400元,列不等式求解;(3)設利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實現(xiàn)目標.【詳解】(1)設A,B兩種型號電風扇的銷售單價分別為x元/臺、y元/臺.依題意,得解得答:A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺.(2)設采購A種型號的電風扇a臺,則采購B種型號的電風扇(30-a)臺.依題意,得200a+170(30-a)≤5400,解得a≤10.答:A種型號的電風扇最多能采購10臺.(3)依題意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【點睛】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系和不等關系,列方程組和不等式求解.23、(1)見詳解;(2)4+或4+.【解析】

(1)根據(jù)關于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結論.(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關系求得方程的另一根.分類討論:①當該直角三角形的兩直角邊是2、3時,②當該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進行計算.【詳解】解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0.∴關于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根.(2)∵此方程的一個根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,則方程的另一根為:m+2-1=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論