




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
June
2024IESPaper:
ET37Howpropermeasurementoflo carbon ydogen’scarbon
intensity
can
re ucere lat ry
riskAlexBarnes,VisitingResearchFellow,
OIESThecontentsofthispaperaretheauthor’ssoleresponsibility.TheydonotnecessarilyrepresenttheviewsoftheOxfordInstituteforEnergyStudiesoranyofitsmembers.1Thecontentsofthispaerretheuthor’solresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
yCopyright?2024OxfordInstituteforEnergy
Studies(RegisteredCharity,No.
286084)Thispublicationmaybereproducedinpartforeducationalornon-profitpurposeswithoutspecialpermissionfromthecopyrightholder,providedacknowledgementofthesourceismade.NouseofthispublicationmaybemadeforresaleorforanyothercommercialpurposewhatsoeverwithoutpriorpermissioninwritingfromtheOxfordInstituteforEnergy
Studies.ISBN978-1-
8467-247-8ummaryHy
rogen
wi a
lo c
bo
inte ity
(‘lowrbonhydogen’)1
is
a eansof
debon
inge s
ofprou
d
v
ele
l
isalso
see
s
a
ytoring
va
able n a ele
tricityindosoar,andher
bv
c
min eofass tedithnt
rmitteenrated
yr
ne
ab e
ctty
ene
tio Ke
s esforpicmak
rsost
f
lo ca
on drog anditsc
rbon
int sity.Botharyonsidralyde
endenttheconmywhicarenotesilyelectfied.Hydrgeoftharonrolmth
highe
rodtiophwysuse
.Theividigline
betweerogen
as
a eans
of
de rboniatiois
notcle cut
T h logi
sconsi e
uncel
ctrificativolvinywh
hanlowarbonhnd r remaect .Elctr
lyticrogenisale
shydr
ge illeusedbec
use
f
h
c
ver. nc
rns atlw
arnhyrog
nrenablgd
plotha
gov
r esneedtotheowescost($/kg
2sno ntjusthatebutlso
t
a
arac
ievi
g
t
b
twhihwlde
enon
the
d
set
nty bo owmchf
cie
t
e
f
el
tricityay s r reorceme
nenlwcarhydroeatesttmofredutioofthey
rogenaellas
eem
sions
(tC bated/k
H2h
dro
en’s
l carbon
i
tensi
.
Pr
uceeedtkn
wt
at
they mplywith
gov
r t ii
onsalowest
ost.cu
e n enlatebased
n
ol rorb
ad
term cas‘clean’rrenwblarinade
uatetheydonotgivanyindicatnofthecarbonint
nsitoftheh
droge,whichiste
key eic
fromof w
arbo
hydr en,whilstusersneedoshowheyareeducingemissions,andhathearedoingthTaatecaocompaa
ioneitheoideer ecte
Deendefiiti
ns
wi re cabon
ccou
i anitidifiultthforcost
of ehydrgen($/kg2)nalikeforlikebasis,ortereliecostofydr
g (tCO2aba
d/kgH2)bointen
ty
depe sontheeissioninludeinthealculation(sys
me
issionsCalculatiboundarycal
ulatinh rogen cndcope)anthisdiffth miss
ncl edsbetweestre
mjurisdicti s.
The
e ealso
diff
r t thodologisforissnin
ude
t p uionofayfedscks(.goil,natural
gaiomassnludingioascol)ad
socesg
nd
tra pttiontthehydr
genp uction
pl . st m
emis ns
wie d
o
t tpe
of
f ds ,
he ethdn
efficiencyof
pr
duc
n,
a
the
dis ce,
met
o
nd
e
i
e
y
trrtation thhydroen
roductionplnt.Thecaron
i
te ityof
fee
stocks liklytobevrysourcespecifi
.Emi insfomhydrgenproductinwlbeetermedbythepr
duct
n
proc susedanthe
energyusedntht
prs
ad based
te nogshavediferentprductonffic
ncies,e
k de
ermin tofelectl
ic
h rogen’s
c
rb itensityis
thecostcarb
idc
rbonsityss.Elerolystre
rates.fthee
ctricis
d. enwablelectc
y
is ro
emissio
s
b
t
its
int
rmittencygher
L el
edost Hdrge(LCO)dutol
w
r
el troly r
l f tr.
Howeverinte ityof
grielerityvaries
onsider
bly weencountriesbsedn
theenerationresltsnthemiEle
tricithas b
baland
in
eal
t
me
i.e.
h
a
ount
f
electri
it
generat
d
and
upplied
o
thegri
mustul
t
e ountta
e
fro theriatn
givem
nt ainin
s
ste talityT
us,the rbsae
timnt sitofhhydrr
gen
sin ri
ele ity
e snthpro
u
io
.
di
onal
d and
fro
trbointlysers
caemis
ons itesults
inorefossilfelgeneraonbeinusebutelectroly
ersityotgridthereltighrridanhpalanc
thegridbyusing‘surplus’renewableelectricitywhichmightotherwisebe
curtailed.Te oral
c
rrel
ion
eas
res carboofhydoge
based
on e
el tricity
use nag
entime
peri
d
e.g
hal
hou
ho
, ontmreensitc
ur
tely ttheo
hydrog
n
b
dntenitarArealera
dre r
men
at
lec
it
r
s
lanc,a
d
t t
tdu drt ti
e
riodrbt timeonth
carb
nin
nsity
o
eel
ricithydrog rodu
ti . se
oflo er
or
la nrulesnheEU,
uchmo
th
cor
atir
s
ste
a
eraging,
s
lts
in
ro
nprodu
tion
with rboitenitiewhi
hanbeigherthanhihcarb
n
hydrog orfosfuels.
ItInthispaperlowcarbonhydrogenisdefinedashydrogenwithasignificantlylowercarbonintensitythanhydrogenbasedonfossilfuelswithoutCCS.SimilarlylowcarbonelectricityisdefinedaselectricitysignificantlylowercarbonintensitythanelectricitybasedonfossilfuelswithoutCCS.Lowcarbonelectricitythereforeincludesrenewables(e.g.wind,solar,hydro,geothermal,biomass),nuclearandfossilfuelgenerationwith
CCS.2Thecontentsofthispaerretheuthor’solresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
ygri
a hydr encarbo
int
nsitie meet
E rqui
ementscou
ries
with uchighhosecoutriewhic
haver w ron
ntesiti .heeffe
tgniedyhge
ingllowsEalongefect
oectro erefficncy.
Ta
t i
en
el trolseriSw
d
n i
g
gr ele
tr
i till
asa
lo
r
ydro
n
c
r
on
inte ityohecuntr
es
e ep
Fr c.
Th
h rtea
on
int sityof
el
ct ytic droentday
tan
t
e ostffientele
tr
lysers ig id tricity
i l
theorezeroar
oelctritywl
e
ee d
in
f rtoremveemiinsinfutur
if
negati emi iosarerequ
red
to main
wit
in cbonbug
t.Theimatofdifferettmporacorrelioneriodsvariescon
id
ably eon
theloo
ng
a
t
e
im
ct
f
ourly,
eekly
an
nnual
c
re
tion
o
grid
in
t
e
w
teelectric
y yem
fo
n l
os rre
tio resuld
n
hig mis
o
s ut
theid.AUS
study2intrnetionCHas
notnece
y
pr
po
onat
y
hi
h
.
Allow
ng
eract
b
t
e
ereslt
in
lo
er
idctroly
e rectad
th ricanpact
o
ydro
n
p
je
t
d ignand o i ,
aissi
s,
as
hown
by studp er
s to
emiss
n sn atholycorlionrlts
ne tr
cit ta.3
Usi e
study’sareatrrdutionin
missionsoem
sionsved. igdta
rlokinattestoric e
mi eL
Oa t y
ono opti
i low
ca4ish ner
y
par ig r
L
OH are
uof r t i
v
t
nta
low LCO perkof
eission
r ctionoparedoonly
usinhydrogenneableanish
griddat tanbsand owrpro
u
tion tgeneratiohselectricity.Low
carbodrogen
faces
hig r
gulatorubs
es rtar
ettat
is
g value
fny
insk
becaus–
t
pportrsfred
citisentireldepnentongvernmnt
tbsinessase.thefrenedstogmissnsroprccountinofcar
ninte
ention
w
hedemons
atintnsit
usiuy
co
elati
n
f
he
us
r
rd
ferent
rule ve misle ngpiure
ofthe e stoemiss
nscti
an
h
nc
n
e
d
ais
lloc
tio
f
e ces.
A
hig
er
L
Hdos t
ne sarilymenahighostofem
sioncn
alsottriegrionbteenleco
seranr cin.
Str
ter poalcrrleri,wichcaresulti
alwin idemis
i s.It
c
ul lsoessn
theefo ti
l
y
equ
m
sinc tive
to
en e a
an
grid ctr
ityey e
i
lo crbon
intensitL
O andsletrol
serictt
mporalenabere ctiwill
havecor
elatiules
i
ed
wit li
ing
sca supr
bas nhearboninte
sitof
lo arb
nhydroe,nabl
a
si lifi
atio fthe le h
hr cesrgutor
uncintyforroctsboth
intermsof
u
derst ing
the
curre rle andheri offutu rulecha
ges.Propercomarionoflowcarbonh
drog
n oduc
d
in iffeet
countrs
requirescom
onmetho
ology
fo
s
r
g
missi
s
lon
t
e
v
lue
ai
,
an
a mmonme la e
b e
onIPHE etodolgforD
trinin
the
Gre usGa
Em
si s
ssociatcarb
inten
ity
o
v
id
th
confu
io
over
er
s.
h
om
on
thodolo
oul
b
ba
ed
on
ewith
he od tio
ofHydrgnThiswldstillbleoiestoseteirwncarbointensitytresold,thelevelofsupporttorovieandhotoproide
it.Theeasond’etroraronhydroesattwillassistormetsnhireffortsecarnietheeconoies.Thisntuependsonthcotffectenesoflwcarbonhrogenioings.Iflowarbodgfidontrteiriskslosigtgvemntpponees
fco
p
nies
o
est
n
he
c
r,
major
o
rce
f
e
ul
to
i
.
rkets
re
t
l
ce
a
an
ingbltcanesextraties
sthsesksto
d witc tf
owarbon
hydro
en
p
vidi
g
able
lear
e
ul
tor
r
me
ork
Cr
i
lly
h
nclbeintralie
–
fin al
costs, oj t
i
ple tio btr
lesss
GHG
e s
ion G
vern nts
ca nable
mar
e o
b gow
theesproeraccountingflowarbonhdrogen’scrniteny,alonsicmmonccountigsndardsandnmnclatur.Onlyriorsaccuntigstads,bkeupyflxiblgvernmetsuportbasdcarbiteny,illeableestentinlocaonyonsly,infrastrucureanddemadhereitakesthmtsens-bothfinacllyndenronmenta
y.Ricks,Xu,Jenkins(2023)‘Minimizingemissionsfromgrid-basedhydrogenproductionintheUnitedStates.’EnvironmentalResearchLetters.WilsonRicksetal2023Environ.Res.Lett.18
0140253Ruhnau,Schiele(2023)‘Flexiblegreenhydrogen:Theeffectofrelaxingsimultaneityrequirementsonprojectdesign,economics,andpowersectoremissions.’Energy
Policy.4Sorrenti,Zheng,Singlitico,You(2023)‘Low-carbonandcost-efficienthydrogenoptimisationthroughagridconnectedelectrolyser:ThecaseofGreenLabSkive.’RenewableandSustainableEnergy
Reviews.3Thecontentsofthispaerretheuthor’solresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
yontentsSummary
iiContents
vFigures
vTables
v1. Introduction
12. Challengesforstakeholders
12.1Policymakers
2.2Hydrogenproducers
2.3Hydrogenusers
3. Clarifyingthenomenclature83.1Thecolourof
hydrogen3.2Clean,renewableorlowcarbonhydrogen
4. Measuringhydrogen’scarbonintensity
114.1SystemBoundaryandScopeEmissions.
114.2Emissionscalculationmethodology
134.3Measuringupstreamemissions
134.4Measuringhydrogenproductionemissions
14Measuringthecarbonintensityofelectricityusedinelectrolysis.
14Temporalcorrelation,additionalityandgeographiccorrelation175.2Comparinghourlyandmonthlytemporalcorrelation175.3Comparinghourlycorrelationwithaveragesystem
matching19Interactionofelectrolyserefficiencywithtemporalcorrelation
20Impactofloosertemporalcorrelationrulesonfuturerenewableenergyneeds235.6Comparinghourly,weeklyandannualtemporalcorrelation245.7Interactionwiththegrid
286.Reducingregulatoryriskforlowcarbonhydrogen317.Conclusions
35FiguresFigure1:Wrngtemp
ratures
f selectedrenewableheattechnologiesand
temperaturerequirmntofsectedindustris
3Figure2:Esti
ation
of newableelectricitygenerationneededfor1MWhbyenergyservicesandbtransf ationpatha
..
...
...Figure3:Illutrationoftrade-offsbetweenusinglowcarbonhydrogenorothertechnologies
todecarose
..
...
..
5Figure4:IllustrationofsystemboundaryandScopeEmissionsforhydrogen
1Figure5:EU27andUKGridElectricityCarbonFootprint2021
5Figure6:ComparisonofEU27andUKgenerationmixandelectricitygridcarbonintensity
5Figur
7: omparon
of
EU andUK2021gridelectricityandelectrolytichydrogencarbonintensibased monthlycor
el
tion
Figure
8: omarisoofU27ad
UK
2 1electrolytichydrogencarbonintensitybasedon
monthcorrelFigurecarboi and
fossil carbninenty..
...
9:Comprisonofcaronelectrlyserrunnghoursundersystemmatchingand
hydrogeniensityusinhurlyteporalcorretion...
...
04Thecontentsofthispaerretheuthor’solresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
yigure10:Impactofelectrolyserefficiencyonhydrogencarbonintensitybyselectedcountry
1Figure11:Additionalcarbonintensitybycountryandelectrolyserefficiency
2Figure12:ZerocarbonelectricityrequiredtoensurecarbonneutralhydrogenusingDAC
4Figure13:GridbasedhydrogenemissionsunderdifferentscenariosinWesternUS
6Figure14:LCOHofgridbasedhydrogenunderdifferentscenariosinWesternUS
7Figure16:GreenLabSkiveCO2abatementcostsscenarios
15Thecontentsofthispaerretheuthor’solresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
yTablesTable1:Carbonintensityofdifferenthydrogenproductionpathways
2Table2:Comparisonofdifferenthydrogendefinitions
9Table3:Electrolyserefficiencyratesandelectricityconsumptionperunitofhydrogenproduced
1Table4:LCOHandimpactonpowersectoremissionsunderdifferentscenariosinGermany
9Table5:ComparisonofLCOHandemissionsreductionsunderdifferentscenariosinGermany9Table6:ComparingHydrogenCarbonIntensityandLCOHscenariosforGreenLabSkive
01.
IntroductionInrecentyearstherehasbeenanincreasingfocusontheuseofhydrogenwithalowcarbonintensity(‘low
carbon
hydrogen’)
as
a
means
of
decarbonising
sectors
of
the
economy
which
are
not
easilyelectrifie Hydrogepoducdviaectrysis
islr,andthr
boringvaablereneableroblmsssciatd
withelectricity neratedintermittetenea
ehydrogn
iwindolct
cil fininenratiprces
,lsoseenaecomi
g.
T
e isalreadinhe nufac
uawy
feo
tifafch
micydr
ge
mar
t
ereand
fe
ti rs.
H ev
rihcarboint
ntyadthrefe
not
sui leas
ausdinthl ish
da
bonisith vd y.5
Issentilodi
eiatbetenxti
gvirtuallmeashig
cni
tensityipdueddoect
fydr ec
rbons re
oregen.
Thcaoi
tnsty
ofl arbonh
drogennprodctionpathayndthenputsue
.can
lso
va considrablydeLowc
rbon
hydr ensa
mandlond
gns(buty
o(G )
emi
io
s.
Lo
c
r
nso
gonment
inerv tnos
men a ansnotte
o
ly ean to
r ueGreenoseGass e
exp iisuired
tmetgdcaronistion
tan
t s
l e t nenddnco
ra o nd tusahs comp
e ith
opae,wayofist
gfosilfu
lsndother e s
ofant
on rehtweri
iss.Locaroydrognherforarbnisao.Governntswill
temsco-effeivde
rnisa
it
e s
of
ydrog ,
blsois
carbolow r
o
h roew
l
r uoldothiif
they
kn ot
onlofi
sio
s
re
cti
n
for
ac
kh
drogen.
e
am
ppliesie
sit
andocomp
niewho
maed,of
th
c
my. canen theostbecnsidering
inglowc
rb
hyd
g
.tatlowcarbn
hydro
en subject
to
f
go r ent
s po
t)
an ncrtai
tyTherequimetforpottiallyhighle(e.g.confsingor
difrnmentspptornterventmeanofreulatyisk(.gchangesineelsrntrulesidiffrentjurisdictin).
Thiper
exami sthecalleges
facingstakeholders
with
regards
to
understanding
hydrogen’s
carbon
intensity;
the
confusing
nomenclatureappied
tcanharisk
canlo
carbon dro n;ntheim
act
th differen pro
ches
to easuncarbnintensityydrog costs
an
its
act
al
car
on
i
tensity.
t
then
prop
s
s
ways
in hichr
gulatoryr
duced.2.Challengesfor
stakeholdersGovernmhyrogebeeasilyal
ngsidt prducrs
nd
sers lhaveaninterst
nclea
ro
it bility
oointe
siulatoryfraeworkcrbiseseooflowcaron
hrlowarbonwiccnnotogni
keAsecefololtrifdwhoitscostreativ
tocarbydroenestabonlectricitythethothrdecarbo
satnsoluonsanduren
unabatd
fossilf l
se.Policy
makersPolicymakersfacetwokeychallengesconcerninglowcarbon
hydrogen:Ithighcotcomparedtocurrenthydrogenproductionandcomparedtothefossilfuelsitaimsto
epl e.Itscarbonintensityandhenceitsabilitytocontributetodecarbonisation
targets.low
c onhdognde
endingTheIEA
reporranofosfloc on.as
d021
ceAfuels
(nral sor ngcl
guot
s
a neof.0sifi
at )
with.0S
/k1.to
3.6nproductioohydg
n/kgfor
fpathaandas
d
o
ssililful
asedhydrgenwit
C,and3.–2UD/kg
forel trolysiusing
loeisonelecticit
.6Decarbonisingexistinghydrogenuseshouldbearelativelyeasypolicygoalasdemandforthehydrogenalreadyexists,andthereforedoesnotrequirethesamedegreeofchangeascompanieswhichwillneedtoswitchfromfossilfuelsto
hydrogen.6IEA(2023),GlobalHydrogenReview2023,IEA,Paris,Licence:CCBY4.0.Pages88to
89.1Thecontentsofthispaerretheuthors’olresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
yheresaloawib
low
a
n deofnatralas,
corangeocarbonntrea
issi
sornuclerfuels.
Bnsitiesfordiffenthdrognssciedith
np
s
u aed
on
IE
figu
es7
th
se
erouctionpatwas.Thefiguresheroduinnrnrtatinumarisedintheable
below:Table1:Carbonintensityofdifferenthydrogenproduction
pathwaysRangeofcarbonintensity
(kgCO2e/kgH2SteamMethaneReformingwithout
CCS10–
13Coalgasificationwithout
CCS22-26SteamMethaneReformingwith
CCS*1.5–
6.2Coalgasificationwith
CCS*2.6–
6.3Electrolysisfromgrid-based
electricity0.5*–
24.0***Nuclear
electricity0.1–
0.3*Assumes93%capture
rate**BasedonSwedishgridcarbonintensityof10g
CO2e/kWh.***Basedonglobalaveragecarbonintensityof460gCO2e/kWh.Ingridswithcarbonintensityabovetheglobalaveragethecarbonintensityofhydrogenwillbe
higher.enti
ns
o
support
low
c
rb
n
hydro
en
nclud andatytrgetssuchasthe
EUGovernmeninterequirementthat(Renewable
Fue2 o droge us
d
i i
dustryof oBiological
Origi
- FNBOs,
t03 s
based rene
abl ectrityUKusidiesfor‘lowcarbon
hydrogen’undertheHydrogenProductionBusinessModel,ortheUS45Vtaxcreditsfor‘cleanhydrogen’undertheInflationReduction
Act.Theividi
glinebetwee
el
ctrificati anlow
arbon
h rogen
as
a eans
of
de rboniatiois
notlogirolvinndhrremscnsirbeunctntyabouthowmchsendyhichectrs.IRNAnotsthata‘rangeofoptionstoproducehighiactcit
(wit
resista e,infrred,iduction,microwve
ancle cut
T hhydrgenwlbetemp
at
e
aexists
a
d y
bdiffer tedu
em
e
ener
efficient
han
he
burning
of
green
hydrogen’.8
Fi
repplictionsandtheirheatrequirementscomparedtodiffernt
soulasmheating)b
o mp
ess
of ergy.Ibid.8IRENA(2022)Greenhydrogenforindustry.Aguidetopolicymaking.Page
12.2Thecontentsofthispaerretheuthors’olresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
yFigure1:Workingtemperaturesforselectedrenewableheattechnologiesandtemperaturerequirementofselected
industriesSource:IRENA(2022),Greenhydrogenforindustry:Aguidetopolicymaking,InternationalRenewablenergyAgency,AbuDhabi.Figure1.3Workingtemperaturesforselectedrenewableheattechnologiesandtemperaturerequirementofselected
industries.Hydrogenialsnasameansstorinsulusreneableeletricituilitisrequred.Oviouscompetitsortisluumpydro9nbaties,wherutilityorsoldca.OtherpotntialcoptitiludthrmaloragAllhecetgthnolishavtadva
tagest
lac o de
n
d nce
whichand
isa
va
tag
s
iffer
t
ost
.
G
ver
t
m
ottecnologies
arestuitableivent
atmany,like
ow
ar n
ydr
gen, e
not
ye delyde
oyed.Eletrolic
hydro
en onl
coeteswitrenwablele
ricitfdecaroisingcer
ainendusesctors,
bu
it ayalso
com
ete iththose
endo
rce f
de nd
forrenewabl lectricityitse,wheetheelectolyser’slad
fat
anals
b
ne
t
s
emefficiency
if
electrolysers
utilise
renewable
electricity
w
ch
w
uasamaetrs
aris aximis
dotherwisecutaile,buttis
mayrolyser’s
l
d
fact
.Mor
o
er,
e
trolytic
hy
ogen
is
lesefficie useof ci
treducetelebecasefthconversi
n
lo .Wlst1kh
of
ren ablectricity
cadirectlyeplce1kh
ofectricit
will
pr
cel
sfoss
f fithan kh
oflectriityu
ed
t et
c t
d nd,1kWhfrenewalesabe
hy
rog .
Relec
i
al
e
i
e
cy
thway
m
tr cay
that hnelectcityasedlterntivesarevailblehebe
used
to ssesh
w
m hmeelecicyteuse
ofhydrogewouldenilcompedorectletrificio.Thiscnnrmpicymkeroneimaedad
ition
po
er
ca
a
ity
neede
to
pow
r
a
c
rt
in
sector
wit
green
hyd
ogen.”10 NAillustratesthepointwithFigure2comparingdifferentusesofelectricityandelectrolytichydroge
.Electricityisusedtopumpwaterintoanuphillreservoirattimesoflowelectricityprices,andthewaterisreleasedtogenerateelectricitywhenpricesare
high.10IRENA(2022)Greenhydrogenforindustry.Aguidetopolicymaking.Page
13.3Thecontentsofthispaerretheuthors’olresposibility.yotecessarilrepresenttheviewsit
Members.ofthOorInstitutfornergyStudieora
y1“CumulativecarbonemissionsuntilthetimeofreachingnetzeroCO2emissionsandthelevelof
greenhousegasemissionreductionsthisdecadelargelydeterminewhetherwarmingcanbelimitedto1.5°Cor2°C(highconfidence)...IftheannualIftheannualCO2emissionsbetween2020–2030stayed,onaverage,atthesamelevelas2019,theresultingcumulativeemissionswouldalmostexhausttheremainingcarbonbudgetfor1.5°C(50%),anddepletemorethanathirdoftheremainingcarbonbudgetfor2°C(67%)”IPCC,2023:SummaryforPolicymakers.In:ClimateChange2023:SynthesisReport.ContributionofWorkingGroupsI,IIandIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[CoreWritingTeam,H.LeeandJ.Romero(eds.)].IPCC,Geneva,Switzerland,pp.1-34,doi:10.59327/IPCC/AR6-9789291691647.001.ParagraphsB.5andB.5.312Ibid.ParagraphB.7.“Ifwarmingexceedsaspecifiedlevelsuchas1.5°C,itcouldgraduallybereducedagainbyachievingandsustainingnetnegativeglobalCO2emissions.Thiswouldrequireadditionaldeploymentofcarbondioxideremoval,compared
topathwayswithoutovershoot,leadingtogreaterfeasibilityandsustainability
con
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車間安全生產(chǎn)協(xié)議書
- 防止股東競爭協(xié)議書
- 買賣房車庫合同協(xié)議書
- 體育生紀律管理協(xié)議書
- 勞動培訓簽服務協(xié)議書
- ktv股東合同協(xié)議書
- 餐館合股開店協(xié)議書
- 鋁礦施工合作協(xié)議書
- 購車簽訂免責協(xié)議書
- 黃山定點醫(yī)藥協(xié)議書
- 漢字的起源適合小學生課件
- 2023年度內(nèi)蒙古自治區(qū)政府采購評審專家資格典型題匯編及答案
- 中職學校招生接待流程
- 機動車檢測站2023年評審準則版質(zhì)量手冊程序文件質(zhì)量記錄合集
- 項管系統(tǒng)培訓(物資管理)
- 《隧道測量》課件
- 【MOOC】線性代數(shù)-浙江大學 中國大學慕課MOOC答案
- 《痤瘡與抗痤瘡藥》課件
- 銀行員工反洗錢知識培訓
- 電瓶車以租代購協(xié)議書范文范本
- 工業(yè)化國家的社會變化 統(tǒng)編版九年級歷史下冊
評論
0/150
提交評論