




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆四川省眉山市洪雅縣中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.的相反數(shù)是A.4 B. C. D.2.﹣0.2的相反數(shù)是()A.0.2 B.±0.2 C.﹣0.2 D.23.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a64.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+315.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.6.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.7.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°8.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.9.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角10.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點F,若AD=1,BD=2,BC=4,則EF=________.12.計算:6﹣=_____13.若a2﹣2a﹣4=0,則5+4a﹣2a2=_____.14.如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.15.甲、乙兩人分別從A,B兩地相向而行,他們距B地的距離s(km)與時間t(h)的關系如圖所示,那么乙的速度是__km/h.16.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結(jié)論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結(jié)論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)330三、解答題(共8題,共72分)17.(8分)如圖,在⊿中,,于,.⑴.求的長;⑵.求的長.18.(8分)計算:(﹣2018)0﹣4sin45°+﹣2﹣1.19.(8分)關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.20.(8分)計算:sin30°?tan60°+..21.(8分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:本次調(diào)查中,王老師一共調(diào)查了名學生;將條形統(tǒng)計圖補充完整;為了共同進步,王老師從被調(diào)查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.22.(10分)為提高城市清雪能力,某區(qū)增加了機械清雪設備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同,求現(xiàn)在平均每天清雪量.23.(12分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.24.如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結(jié)FD、BE、BF,設OP=t.(1)直接寫出點E的坐標(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
直接利用相反數(shù)的定義結(jié)合絕對值的定義分析得出答案.【詳解】-1的相反數(shù)為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數(shù),正確把握相關定義是解題的關鍵.2、A【解析】
根據(jù)相反數(shù)的定義進行解答即可.【詳解】負數(shù)的相反數(shù)是它的絕對值,所以﹣0.2的相反數(shù)是0.2.故選A.【點睛】本題主要考查相反數(shù)的定義,熟練掌握這個知識點是解題關鍵.3、D【解析】
根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關鍵是掌握各計算法則.4、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.5、B【解析】
畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果數(shù),再利用概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.6、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.7、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應用,能正確作出輔助線是解此題的關鍵.8、D【解析】
根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.9、B【解析】
利用對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【點睛】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義,難度不大.10、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數(shù)圖象與幾何變換.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
由DE∥BC可得出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)和平行線的性質(zhì)解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點睛】此題考查相似三角形的判定和性質(zhì),關鍵是由DE∥BC可得出△ADE∽△ABC.12、3【解析】
按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關鍵是注意化簡算式.13、-3【解析】試題解析:∵即∴原式故答案為14、1.【解析】
根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設AP=a,則BP=2a,OA=3a,設點A的坐標為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數(shù)圖象點的坐標特征、正方形的性質(zhì),解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.15、3.6【解析】分析:根據(jù)題意,甲的速度為6km/h,乙出發(fā)后2.5小時兩人相遇,可以用方程思想解決問題.詳解:由題意,甲速度為6km/h.當甲開始運動時相距36km,兩小時后,乙開始運動,經(jīng)過2.5小時兩人相遇.設乙的速度為xkm/h4.5×6+2.5x=36解得x=3.6故答案為3.6點睛:本題為一次函數(shù)實際應用問題,考查一次函數(shù)圖象在實際背景下所代表的意義.解答這類問題時,也可以通過構(gòu)造方程解決問題.16、不合理,樣本數(shù)據(jù)不具有代表性【解析】
根據(jù)表中所取的樣本不具有代表性即可得到結(jié)論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關鍵.三、解答題(共8題,共72分)17、(1)25(2)12【解析】整體分析:(1)用勾股定理求斜邊AB的長;(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.18、.【解析】
根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值進行計算【詳解】解:原式=1﹣4×+2﹣=1﹣2+2﹣=【點睛】本題考查了實數(shù)的運算:實數(shù)的運算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實數(shù)既可以進行加、減、乘、除、乘方運算,又可以進行開方運算,其中正實數(shù)可以開平方.19、(1);(2)m=﹣.【解析】
(1)根據(jù)已知和根的判別式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根據(jù)根與系數(shù)的關系得出x1+x2=﹣2,x1?x2=2m,把x1+xx12+x22﹣x1x2=8變形為(x1+x2)2﹣3x1x2=8,代入求出即可.【詳解】(1)∵關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根,∴△=22﹣4×1×2m=4﹣8m>0,解得:即m的取值范圍是(2)∵x1,x2是一元二次方程x2+2x+2m=0的兩個根,∴x1+x2=﹣2,x1?x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:【點睛】本題考查了根的判別式和根與系數(shù)的關系,能熟記根的判別式的內(nèi)容和根與系數(shù)的關系的內(nèi)容是解此題的關鍵.20、【解析】試題分析:把相關的特殊三角形函數(shù)值代入進行計算即可.試題解析:原式=.21、(1)20;(2)作圖見試題解析;(3).【解析】
(1)由A類的學生數(shù)以及所占的百分比即可求得答案;(2)先求出C類的女生數(shù)、D類的男生數(shù),繼而可補全條形統(tǒng)計圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結(jié)果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據(jù)題意得:王老師一共調(diào)查學生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結(jié)果,其中,一男一女的有3種,所以所選兩位同學恰好是一位男生和一位女生的概率為:.22、現(xiàn)在平均每天清雪量為1立方米.【解析】分析:設現(xiàn)在平均每天清雪量為x立方米,根據(jù)等量關系“現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同”列分式方程求解.詳解:設現(xiàn)在平均每天清雪量為x立方米,由題意,得解得x=1.經(jīng)檢驗x=1是原方程的解,并符合題意.答:現(xiàn)在平均每天清雪量為1立方米.點睛:此題主要考查了分式方程的應用,關鍵是確定問題的等量關系,注意解分式方程的時候要進行檢驗.23、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 華南鋁合金模板生產(chǎn)可行性研究報告-廣州2025咨詢
- 海鮮運營方案
- 定做商品合同協(xié)議書范本
- 商鋪廠房出租合同協(xié)議書
- 安全文明行車課件
- 污泥處理外包合同協(xié)議書
- 中國棕櫚酸甲酯項目商業(yè)計劃書
- 美容行業(yè)智能化皮膚管理技術與應用方案
- 年產(chǎn)500臺數(shù)控機床項目可行性研究報告申請報告
- 兒童興趣班創(chuàng)業(yè)計劃書
- RBA-6.0-培訓教材課件
- 《客艙安全與應急處置》-課件:滅火設備:機載滅火瓶
- 國際關系史智慧樹知到期末考試答案2024年
- 上海中考英語語法專項練習題集和參考答案
- 辦公室安全事故分析
- 天堂旅行團讀書分享
- 23秋國家開放大學《視覺設計基礎》形考任務1-5參考答案
- 衛(wèi)通通信系統(tǒng)-FDMA方式
- 2023淄博中考英語試題及答案
- 肥胖癥康復課件
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術標準》
評論
0/150
提交評論