




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題01旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對角互補模型)本專題重點分析旋轉(zhuǎn)中的三類全等模型(手拉手、半角、對角互補模型),結(jié)合各類模型展示旋轉(zhuǎn)中的變與不變,并結(jié)合經(jīng)典例題和專項訓練深度分析基本圖形和歸納主要步驟,同時規(guī)范了解題步驟,提高數(shù)學的綜合解題能力。模型1.手拉手模型【模型解讀】將兩個三角形(或多邊形)繞著公共頂點旋轉(zhuǎn)某一角度后能完全重合,則這兩個三角形構(gòu)成手拉手全等,也叫旋轉(zhuǎn)型全等。其中:公共頂點A記為“頭”,每個三角形另兩個頂點逆時針順序數(shù)的第一個頂點記為“左手”,第二個頂點記為“右手”。手拉模型解題思路:SAS型全等(核心在于導(dǎo)角,即等角加(減)公共角)。1)雙等邊三角形型條件:△ABC和△DCE均為等邊三角形,C為公共點;連接BE,AD交于點F。結(jié)論:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。2)雙等腰直角三角形型條件:△ABC和△DCE均為等腰直角三角形,C為公共點;連接BE,AD交于點N。結(jié)論:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。3)雙等腰三角形型條件:△ABC和△DCE均為等腰三角形,C為公共點;連接BE,AD交于點F。結(jié)論:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠AFD。4)雙正方形形型條件:△ABCFD和△CEFG都是正方形,C為公共點;連接BG,ED交于點N。結(jié)論:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。例1.(2022·黑龍江·中考真題)和都是等邊三角形.(1)將繞點A旋轉(zhuǎn)到圖①的位置時,連接BD,CE并延長相交于點P(點P與點A重合),有(或)成立;請證明.(2)將繞點A旋轉(zhuǎn)到圖②的位置時,連接BD,CE相交于點P,連接PA,猜想線段PA、PB、PC之間有怎樣的數(shù)量關(guān)系?并加以證明;(3)將繞點A旋轉(zhuǎn)到圖③的位置時,連接BD,CE相交于點P,連接PA,猜想線段PA、PB、PC之間有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論,不需要證明.【答案】(1)證明見解析(2)圖②結(jié)論:,證明見解析(3)圖③結(jié)論:【分析】(1)由△ABC是等邊三角形,得AB=AC,再因為點P與點A重合,所以PB=AB,PC=AC,PA=0,即可得出結(jié)論;(2)在BP上截取,連接AF,證明(SAS),得,再證明(SAS),得,,然后證明是等邊三角形,得,即可得出結(jié)論;(3)在CP上截取,連接AF,證明(SAS),得,再證明(SAS),得出,,然后證明是等邊三角形,得,即可得出結(jié)論:.(1)證明:∵△ABC是等邊三角形,∴AB=AC,∵點P與點A重合,∴PB=AB,PC=AC,PA=0,∴或;(2)解:圖②結(jié)論:證明:在BP上截取,連接AF,∵和都是等邊三角形,∴,,∴,∴,∴(SAS),∴,∵AC=AB,CP=BF,
∴(SAS),∴,,∴,∴,∴是等邊三角形,∴,∴;(3)解:圖③結(jié)論:,理由:在CP上截取,連接AF,∵和都是等邊三角形,∴,,∴,∴,∴(SAS),∴,∵AB=AC,BP=CF,∴(SAS),
∴,,∴,∴,∴是等邊三角形,∴,∴,即.【點睛】本題考查等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),熟練掌握等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)是解題的關(guān)鍵.例2.(2023·湖南·長沙市八年級階段練習)如圖1,在Rt△ABC中,∠B=90°,AB=BC=4,點D,E分別為邊AB,BC上的中點,且BD=BE=.(1)如圖2,將△BDE繞點B逆時針旋轉(zhuǎn)任意角度α,連接AD,EC,則線段EC與AD的關(guān)系是;(2)如圖3,DE∥BC,連接AE,判斷△EAC的形狀,并求出EC的長;(3)繼續(xù)旋轉(zhuǎn)△BDE,當∠AEC=90°時,請直接寫出EC的長.【答案】(1)EC=AD,EC⊥AD(2)等腰三角形,(3)【分析】(1)延長CE交AD于F,交AB于O,證明△ABD≌△CBE(SAS),得∠BCE=∠BAD,CE=AD,再由∠AOF=∠BOC,可得∠AFC=∠ABC=90°,即可得到結(jié)論;(2)設(shè)DE與AB的交點為H,可得AB是DE的垂直平分線,利用勾股定理可求出AE的長,由(1)知CE=AD,從而得出答案;(3)分當點E在BC上方時和當點E在BC下方時,分別畫圖,利用勾股定理計算即可.(1)EC與AD垂直且相等,理由如下:延長CE交AD于F,交AB于O,∵△BDE和△ABC都是等腰直角三角形,∴BD=BE,AB=BC,∠DBE=∠ABC=90°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS),∴∠BCE=∠BAD,CE=AD,∵∠AOF=∠BOC,∴∠AFE=∠ABC=90°,∴AD⊥CE,∴故答案為:EC=AD,EC⊥AD;(2)設(shè)DE與AB的交點為H,∵DE∥BC,∴∠AHE=∠ABC=90°,∵BD=BE,∴AB是DE的垂直平分線,∴AD=AE,由(1)知AD=CE,∴AE=CE,∴△ACE是等腰三角形,∵BE=,∴BH=HE=1,∴AH=AB﹣BH=4﹣1=3,在Rt△AHE中,由勾股定理得:AE=,∴CE=AE=;(3)如圖4,當點E在BC上方時,過點B作BG⊥DE于G,∵∠AEC=90°,CE⊥AD,∴A、E、D三點共線,∴AG=,∴AD=AG+DG=,∴CE=AD=+1;如圖,當點E在BC下方時,同理可得CE=CG﹣GE=﹣1.綜上:CE=+1或﹣1.【點睛】本題主要考查了等腰直角三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理等知識,根據(jù)前面探索的結(jié)論解決新的問題是解題的關(guān)鍵.例3.(2023·黑龍江·虎林市九年級期末)已知Rt△ABC中,AC=BC,∠ACB=90°,F(xiàn)為AB邊的中點,且DF=EF,∠DFE=90°,D是BC上一個動點.如圖1,當D與C重合時,易證:CD2+DB2=2DF2;(1)當D不與C、B重合時,如圖2,CD、DB、DF有怎樣的數(shù)量關(guān)系,請直接寫出你的猜想,不需證明.(2)當D在BC的延長線上時,如圖3,CD、DB、DF有怎樣的數(shù)量關(guān)系,請寫出你的猜想,并加以證明.【答案】(1)CD2+DB2=2DF2;(2)CD2+DB2=2DF2,證明見解析【分析】(1)由已知得,連接CF,BE,證明得CD=BE,再證明為直角三角形,由勾股定理可得結(jié)論;(2)連接CF,BE,證明得CD=BE,再證明為直角三角形,由勾股定理可得結(jié)論.【詳解】解:(1)CD2+DB2=2DF2證明:∵DF=EF,∠DFE=90°,∴∴連接CF,BE,如圖∵△ABC是等腰直角三角形,F(xiàn)為斜邊AB的中點∴,即∴,又∴在和中∴∴,∴∴∵,∴CD2+DB2=2DF2;(2)CD2+DB2=2DF2證明:連接CF、BE∵CF=BF,DF=EF又∵∠DFC+∠CFE=∠EFB+∠CFB=90°∴∠DFC=∠EFB∴△DFC≌△EFB
∴CD=BE,∠DCF=∠EBF=135°∵∠EBD=∠EBF-∠FBD=135°-45°=90°在Rt△DBE中,BE2+DB2=DE2∵DE2=2DF2∴CD2+DB2=2DF2【點睛】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、證明三角形全等是解決問題的關(guān)鍵,學會添加常用輔助線,構(gòu)造全等三角形解決問題.例4.(2022·青?!ぶ锌颊骖})兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來,則形成一組全等的三角形,把具有這個規(guī)律的圖形稱為“手拉手”圖形.(1)問題發(fā)現(xiàn):如圖1,若和是頂角相等的等腰三角形,BC,DE分別是底邊.求證:;(2)解決問題:如圖2,若和均為等腰直角三角形,,點A,D,E在同一條直線上,CM為中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系并說明理由.
圖1
圖2【答案】(1)見解析(2);【分析】(1)先判斷出∠BAD=∠CAE,進而利用SAS判斷出△BAD≌△CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出結(jié)論.【解析】(1)證明:∵和是頂角相等的等腰三角形,∴,,,∴,∴.在和中,,∴,∴.(2)解:,,理由如下:由(1)的方法得,,∴,,∵是等腰直角三角形,∴,∴,∴,∴.∵,,∴.∵,∴,∴.∴.【點睛】此題是三角形綜合題,主要考查了全等三角形的判定和性質(zhì),等腰三角形,等邊三角形,等腰直角三角形的性質(zhì),判斷出△ACD≌△BCE是解本題的關(guān)鍵.例5.(2023春·浙江·八年級專題練習)邊長為4的正方形ABCD與邊長為2的正方形CEFG如圖1擺放,將正方形CEFG繞點C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α,連接BG,DE.(1)如圖2,求證:△BCG≌△DCE;(2)如圖2,連接DG,BE,判斷DG2+BE2否為定值.若是,求這個定值若不是,說明理由;(3)如圖3,當點G恰好落在DE上時,求α的值.【答案】(1)見解析;(2)48;(3)【分析】(1)通過邊角邊判定三角形全等;(2)連接,設(shè)交于點,交于點,先證明,由勾股定理可得;(3)作于點,則,且,由含30度角的直角三角形的性質(zhì)求解.【詳解】(1)四邊形與為正方形,,,,,,在和中,(SAS),(2)連接,設(shè)交于點,交于點,,,,在△和中,,,,,由勾股定理得,,,,,,,(3)作于點,如圖,△為等腰直角三角形,,且,在中,,,,..【點睛】本題考查四邊形與三角形的綜合問題,解題關(guān)鍵是熟練掌握正方形與直角三角形的性質(zhì),通過添加輔助線求解.模型2.半角模型【模型解讀】半角模型概念:過多邊形一個頂點作兩條射線,使這兩條射線夾角等于該頂角一半思想方法:通過旋轉(zhuǎn)構(gòu)造全等三角形,實現(xiàn)線段的轉(zhuǎn)化1)正方形半角模型條件:四邊形ABCD是正方形,∠ECF=45°;結(jié)論:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④AEF的周長=2AB;⑤CE、CF分別平分∠BEF和∠EFD。2)等腰直角三角形半角模型條件:ABC是等腰直角三角形,∠DAE=45°;結(jié)論:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等邊三角形半角模型(120°60°型)條件:ABC是等邊三角形,BDC是等腰三角形,且BD=CD,∠BDC=120°,∠EDF=60°;結(jié)論:①△BDE≌△CDG;②△EDF≌△GDF;③EF=BE+FC;④AEF的周長=2AB;⑤DE、DF分別平分∠BEF和∠EFC。4)等邊三角形半角模型(60°30°型)條件:ABC是等邊三角形,∠EAD=30°;結(jié)論:①△BDA≌△CFA;②△DAE≌△FAE;③∠ECF=120°;④DE2=(BD+EC)2+;5)任意角度的半角模型(型)條件:∠BAC=,AB=AC,∠DAE=;結(jié)論:①△BAD≌△CAF;②△EAD≌△EAF;③∠ECF=180°。例1.(2023·福建·龍巖九年級期中)(1)【發(fā)現(xiàn)證明】如圖1,在正方形中,點,分別是,邊上的動點,且,求證:.小明發(fā)現(xiàn),當把繞點順時針旋轉(zhuǎn)90°至,使與重合時能夠證明,請你給出證明過程.(2)【類比引申】①如圖2,在正方形中,如果點,分別是,延長線上的動點,且,則(1)中的結(jié)論還成立嗎?若不成立,請寫出,,之間的數(shù)量關(guān)系______(不要求證明)②如圖3,如果點,分別是,延長線上的動點,且,則,,之間的數(shù)量關(guān)系是_____(不要求證明).(3)【聯(lián)想拓展】如圖1,若正方形的邊長為6,,求的長.【答案】(1)見解析;(2)①不成立,結(jié)論:;②,見解析;(3)【分析】(1)證明,可得出,則結(jié)論得證;(2)①將繞點順時針旋轉(zhuǎn)至根據(jù)可證明,可得,則結(jié)論得證;②將繞點逆時針旋轉(zhuǎn)至,證明,可得出,則結(jié)論得證;(3)求出,設(shè),則,,在中,得出關(guān)于的方程,解出則可得解.【詳解】(1)證明:把繞點順時針旋轉(zhuǎn)至,如圖1,,,,,,,三點共線,,,,,,,,;(2)①不成立,結(jié)論:;證明:如圖2,將繞點順時針旋轉(zhuǎn)至,,,,,,,,;②如圖3,將繞點逆時針旋轉(zhuǎn)至,,,,,,,,,.即.故答案為:.(3)解:由(1)可知,正方形的邊長為6,,.,,設(shè),則,,在中,,,解得:.,.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理的綜合應(yīng)用,解題的關(guān)鍵是作輔助線構(gòu)造全等三角形,根據(jù)全等三角形的對應(yīng)邊相等進行推導(dǎo).例2.(2023·江蘇·八年級專題練習)如圖,△ABC,△DEP是兩個全等的等腰直角三角形,∠BAC=∠PDE=90°.使△DEP的頂點P與△ABC的頂點A重合,PD,PE分別與BC相交于點F、G,若BF=6,CG=4,則FG=_____.【答案】【分析】將△ABF繞A點逆時針旋轉(zhuǎn),使AB與AC重合,即可構(gòu)建出直角三角形CGH,由勾股定理可求出GH的長度,再證明△FAG≌△GAH即可.【詳解】解:將△ABF繞A點逆時針旋轉(zhuǎn),使AB與AC重合,∵△ACH由△ABF旋轉(zhuǎn)得到,∴∠BAF=∠CAH,CH=BF=6,AF=AH,∠B=∠ACH∵△ABC,△DEP是兩個全等的等腰直角三角形∴∠B=45°,∠ACB=45°∴∠HCG=90°在Rt△HCG中,由勾股定理得:GH=,∵∠FAG=45°∴∠BAF+∠GAC=45°∴∠CAH+∠GAC=45°,即∠GAH=45°在△FAG和△GAH中,AF=AH,∠FAG=∠GAH,AG=AG∴△FAG≌△GAH∴FG=GH=故答案為:.【點睛】本題主要考查了三角形的旋轉(zhuǎn),通過旋轉(zhuǎn)后構(gòu)建出直角三角形和全等三角形是解題的關(guān)鍵,解題的關(guān)鍵是注意旋轉(zhuǎn)是一種全等的變化,旋轉(zhuǎn)前后對應(yīng)邊和對應(yīng)角相等.例3.(2023·湖北武漢·九年級??茧A段練習)如圖,在△ABC中,AB=AC=2.∠BAC=120°,點D,E都在邊BC上,∠DAE=60°,若BD=2CE,求DE的長.【答案】DE=3﹣3.【分析】將繞點A逆時針旋轉(zhuǎn)120°得到,取CF的中點G,連接EF、EG,由AB=AC、,可得出,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出,結(jié)合可得出為等邊三角形,進而得出為直角三角形,通過解直角三角形求出的長度以及證明全等找出,設(shè),則,,在中利用勾股定理可得出,利用,可求出以及的值;【詳解】解:將繞點A逆時針旋轉(zhuǎn)120°得到,取的中點G,連接,如圖所示:過點作于點,如圖,∵,,∴,在中,,∴,∴,∴,∴,∴.∵,∴,∴為等邊三角形,∴,∴,∴為直角三角形,∵,∴,∴.在和中,,∴,∴.設(shè),則,在中,,=x,∴,∴,∴,答:的長為.【點睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理、解一元二次方程以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出關(guān)于x的一元二次方程是解題的關(guān)鍵.例4.(2023·綿陽市八年級期中)在等邊△ABC的兩邊AB、AC所在直線上分別有兩點M、N,D為△ABC外一點,且∠MDN=60°,∠BDC=120°,BD=DC.探究:當M、N分別在直線AB、AC上移動時,BM、NC、MN之間的數(shù)量關(guān)系.(1)如圖1,當點M、N邊AB、AC上,且DM=DN時,BM、NC、MN之間的數(shù)量關(guān)系是;(2)如圖2,點M、N在邊AB、AC上,且當DM≠DN時,猜想(1)問的結(jié)論還成立嗎?若成立請直接寫出你的結(jié)論;若不成立請說明理由.(3)如圖3,當M、N分別在邊AB、CA的延長線上時,探索BM、NC、MN之間的數(shù)量關(guān)系如何?并給出證明.【答案】(1);(2)成立,;(3),見解析【分析】(1)由DM=DN,∠MDN=60°可得△MDN是等邊三角形,得到Rt△BDM≌Rt△CDN,然后由直角三角形的性質(zhì)即可求解;(2)在CN的延長線上截取CM1=BM,連接DM1,可證△DBM≌△DCM1,得到∠M1DN=∠MDN=60°,從而得到△MDN≌△M1DN(SAS),即可求證;(3)在CN上截取CM1=BM,連接DM1,可證得△MDN≌△M1DN,即可求證.【詳解】(1)解:BM、NC、MN之間的數(shù)量關(guān)系BM+NC=MN.∵DM=DN,∠MDN=60°,∴△MDN是等邊三角形,∵△ABC是等邊三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠BDC=∠DCB=30°,∴∠MBD=∠NCD=90°,在Rt△BDM和Rt△CDN中,,∴Rt△BDM≌Rt△CDN(HL),∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN,故答案為:BM+NC=MN;(2)猜想:結(jié)論仍然成立.證明:在CN的延長線上截取CM1=BM,連接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1(SAS),∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN(SAS),∴MN=M1N=M1C+NC=BM+NC;(3)NC?BM=MN,理由如下:證明:在CN上截取CM1=BM,連接MN,DM1由(2)得,△DBM≌△DCM1,∴DM=DM1,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN(SAS),∴MN=M1N,∴NC﹣BM=MN.【點睛】本題考查了等邊三角形,直角三角形,等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,作出合適的輔助線,構(gòu)造出全等三角形.例5.(2023·重慶市二模)回答問題(1)【初步探索】如圖1:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且EF=BE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.小王同學探究此問題的方法是:延長FD到點G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_______________;(2)【靈活運用】如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且EF=BE+FD,上述結(jié)論是否仍然成立,并說明理由;(3)【拓展延伸】知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點E在CB的延長線上,點F在CD的延長線上,如圖3所示,仍然滿足EF=BE+FD,請直接寫出∠EAF與∠DAB的數(shù)量關(guān)系.【答案】(1)∠BAE+∠FAD=∠EAF;(2)仍成立,理由見解析;(3)∠EAF=180°∠DAB【分析】(1)延長FD到點G,使DG=BE,連接AG,可判定△ABE≌△ADG,進而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,據(jù)此得出結(jié)論;(2)延長FD到點G,使DG=BE,連接AG,先判定△ABE≌△ADG,進而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)在DC延長線上取一點G,使得DG=BE,連接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根據(jù)∠FAE+∠FAG+∠GAE=360°,推導(dǎo)得到2∠FAE+∠DAB=360°,即可得出結(jié)論.【詳解】解:(1)∠BAE+∠FAD=∠EAF.理由:如圖1,延長FD到點G,使DG=BE,連接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案為:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如圖2,延長FD到點G,使DG=BE,連接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°∠DAB.證明:如圖3,在DC延長線上取一點G,使得DG=BE,連接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°∠DAB.【點睛】本題屬于三角形綜合題,主要考查了全等三角形的判定以及全等三角形的性質(zhì)的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形,根據(jù)全等三角形的對應(yīng)角相等進行推導(dǎo)變形.解題時注意:同角的補角相等.模型3、旋轉(zhuǎn)中的對角互補模型【模型解讀】對角互補模型概念:對角互補模型特指四邊形中,存在一對對角互補,而且有一組鄰邊相等的幾何模型。思想方法:解決此類問題常用的輔助線畫法主要有兩種:①過頂點做雙垂線,構(gòu)造全等三角形;②進行旋轉(zhuǎn)的構(gòu)造,構(gòu)造手拉手全等。1)“共斜邊等腰直角三角形+直角三角形”模型(異側(cè)型)條件:如圖,已知∠AOB=∠DCE=90°,OC平分∠AOB.結(jié)論:①CD=CE,②OD+OE=OC,③.2)“斜邊等腰直角三角形+直角三角形”模型(同側(cè)型)條件:如圖,已知∠DCE的一邊與AO的延長線交于點D,∠AOB=∠DCE=90°,OC平分∠AOB.結(jié)論:①CD=CE,②OE-OD=OC,③.3)“等邊三角形對120°模型”(1)條件:如圖,已知∠AOB=2∠DCE=120°,OC平分∠AOB.結(jié)論:①CD=CE,②OD+OE=OC,③.4)“等邊三角形對120°模型”(2)條件:如圖,已知∠AOB=2∠DCE=120°,OC平分∠AOB,∠DCE的一邊與BO的延長線交于點D,結(jié)論:①CD=CE,②OD-OE=OC,③.5)“120°等腰三角形對60°模型”條件:△ABC是等腰三角形,且∠BAC=120°,∠BPC=60°。結(jié)論:①PB+PC=PA;例1.(2022秋·江蘇·八年級專題練習)在△ABC中,∠BAC=90°,AB=AC,D為BC的中點.(1)如圖1,E、F分別是AB、AC上的點,且BE=AF、求證:△DEF是等腰直角三角形經(jīng)過分析已知條件AB=AC,D為BC的中點.容易聯(lián)想等腰三角形三線合一的性質(zhì),因此,連結(jié)AD(如圖2),以下是某同學由已知條件開始,逐步按層次推出結(jié)論的流程圖.請幫助該同學補充完整流程圖.補全流程圖:①,②∠EDF=(2)如果E、F分別為AB、CA延長線上的點,仍有BE=AF,其他條件不變,試猜想△DEF是否仍為等腰直角三角形?請在備用圖中補全圖形、先作出判斷,然后給予證明.【答案】(1)△BDE,△ADF,90°;(2)△DEF仍為等腰直角三角形,理由見解析【分析】(1)連接AD,根據(jù)∠BAC=90°,AB=AC,D為BC的中點,可以得到∠B=∠C=45°,AD⊥BC,,,從而可以證明△BDE≌△ADF(SAS),得到DE=DF,∠BDE=∠ADF,由∠ADE+∠BDE=∠BDA=90°,可得∠ADE+∠ADF=90°,即∠EDF=90°,即可證明;(2)連接AD,同樣證明△BDE≌△ADF(SAS),得到DE=DF,∠BDE=∠ADF,再由∠ADF+∠BDF=∠BDA=90°,即可得到∠BDE+∠BDF=90°,即∠EDF=90°,即可證明.【詳解】解:(1)如圖所示,連接AD,∵∠BAC=90°,AB=AC,D為BC的中點,∴∠B=∠C=45°,AD⊥BC,,,∴∠B=∠BAD=∠CAD,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠ADE+∠BDE=∠BDA=90°,∴∠ADE+∠ADF=90°,即∠EDF=90°,∴△DEF是等腰直角三角形;故答案為:△BDE,△ADF,90°;(2)△DEF仍為等腰直角三角形,理由如下:連接AD,∵∠BAC=90°,AB=AC,D為BC的中點,∴∠ABC=∠C=45°,AD⊥BC,,,∴∠FAD=180°∠CAD=135°,∠EBD=180°∠ABC=135°,∴∠FAD=∠EBD,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠ADF+∠BDF=∠BDA=90°,∴∠BDE+∠BDF=90°,即∠EDF=90°,∴△DEF是等腰直角三角形.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,等腰直角三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.例2.(2023·山東棗莊·中考模擬)在中,,,于點,(1)如圖1,點,分別在,上,且,當,時,求線段的長;(2)如圖2,點,分別在,上,且,求證:;(3)如圖3,點在的延長線上,點在上,且,求證:;【答案】(1);(2)見解析;(3)見解析.【分析】(1)根據(jù)等腰三角形的性質(zhì)、直角三角形的性質(zhì)得到AD=BD=DC=,求出∠MBD=30°,根據(jù)勾股定理計算即可;(2)證明△BDE≌△ADF,根據(jù)全等三角形的性質(zhì)證明;(3)過點M作ME∥BC交AB的延長線于E,證明△BME≌△AMN,根據(jù)全等三角形的性質(zhì)得到BE=AN,根據(jù)等腰直角三角形的性質(zhì)、勾股定理證明結(jié)論.【詳解】(1)解:,,,,,,,,,,,,由勾股定理得,,即,解得,,;(2)證明:,,,在和中,,;(3)證明:過點作交的延長線于,,則,,,,,,在和中,,,,.【點睛】本題考查的是等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、直角三角形的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.例3.(2023秋·浙江·八年級專題練習)如圖1,,,MN是過點A的直線,過點D作于點B,連接CB;過點C作,與MN交于點E.(1)連接AD,AD是AC的______倍;(2)直線MN在圖1所示位置時,可以得到線段BD和AE的數(shù)量關(guān)系是______,與BC之間的數(shù)量關(guān)系是______,請證明你的結(jié)論;(3)直線MN繞點A旋轉(zhuǎn)到圖2的位置,若,,則AB的長為______(直接寫結(jié)果);(4)直線MN繞點A旋轉(zhuǎn)到圖3的位置時,直接寫出線段BA,BC,BD之間的數(shù)量關(guān)系______.【答案】(1);(2)AE=BD,BD﹣AB=BC;(3)4;(4)BA+BD=BC【分析】(1)由,,根據(jù)勾股定理可直接得出答案;(2)先證明△ACE≌△DCB,確定△ECB為等腰直角三角形,即可得出答案;(3)先證明△ACE≌△DCB,CE=BC,得到△BCE為等腰直角三角形,得到AB=BD+BC,即可得出答案;(4)先證明△ACE≌△DCB,確定△ECB為等腰直角三角形即可得出答案.【詳解】(1)解:連接AD,設(shè)AC=a,則DC=a,∴AD=,即AD是AC的倍,故答案為:.(2)如圖1,設(shè)AC與BD交于O,由題可知,∠BCE=90°=∠ACD,∴∠ACE=∠BCD,∵BD⊥MN,∴∠ABD=90°=∠ACD,∵∠AOB=∠DOC,∴∠BAC=∠CDB,∵AC=DC,∴△ACE≌△DCB(ASA),∴CE=BC,AE=BD,∵∠BCE=90°,∴△ECB為等腰直角三角形,∴BE=BC,∵BE=AE﹣AB=BD﹣AB,∴BD﹣AB=BC;故答案為:AE=BD;BD﹣AB=BC;(3)解:如圖2,設(shè)CD與MN交于O,由題可知,∠BCE=90°=∠ACD,∴∠ACE=∠BCD,∵BD⊥MN,∴∠ABD=90°=∠ACD,∵∠AOC=∠DOB,∴∠BAC=∠CDB,∵AC=DC,∴△ACE≌△DCB(ASA),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AB﹣AE=AB﹣BD,∴AB=BD+BC,∵BD=2,BC=,∴AB=BD+BC=4,故答案為:4.(4)∴∠BCE=90°=∠ACD,∴∠ACE=∠DCB,∠CEB+∠CBE=90°,∵BD⊥MN,∴∠ABD=90°,∴∠CBE+∠CBD=90°,∴∠CEB=∠CBD,∵AC=DC,∴△ACE≌△DCB(AAS),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AE+BA=BD+BA,∴BA+BD=BC,故答案為:BA+BD=BC.【點睛】此題屬于幾何變換綜合題,主要考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì)和判定,勾股定理,全等三角形的判定和性質(zhì),構(gòu)造全等三角形是解本題的關(guān)鍵.例4.(2023四川宜賓八年級期末)如圖1,,平分,以為頂點作,交于點,于點E.(1)求證:;(2)圖1中,若,求的長;(3)如圖2,,平分,以為頂點作,交于點,于點.若,求四邊形的面積.【答案】(1)見解析;(2)OD+OE=;(3)【分析】(1)過點C作CG⊥OA于G,CH⊥OB于H,然后根據(jù)題意利用AAS定理進行證明△CDG≌△CEH,從而求解;(2)根據(jù)全等三角形的性質(zhì)得到OD+OE=2OH,然后利用勾股定理求OH的值,從而求解;(3)過點C作CG⊥OA于G,CH⊥OB于H,然后根據(jù)題意利用AAS定理進行證明△CDG≌△CEH,從而求得==2,然后利用含30°的直角三角形性質(zhì)求得OH=,CH=從而求得三角形面積,使問題得到解決.【詳解】解:(1)如圖,過點C作CG⊥OA于G,CH⊥OB于H,∵平分∴CG=CH
∵,
∴∠CDO+∠CEO=180?∵∠CDG+∠CDO=180?∴∠CDG=∠CEO在△CDG與△CEH中∴△CDG≌△CEH(AAS)∴(2)由(1)得△CDG≌△CEH∴DG=HE由題易得△OCG與△OCH是全等的等腰直角三角形,且OG=OH∴OD+OE=OD+OH+HE=OG+OH=2OH設(shè)OH=CH=x,在Rt△OCH中,由勾股定理,得:OH2+CH2=OC2∴∴(舍負)∴OH=∴OD+OE=2OH=(3)如圖,過點C作CG⊥OA于G,CH⊥OB于H,∵平分∴CG=CH∵,∴∠CDO+∠CEO=180?∵∠CDG+∠CDO=180?∴∠CDG=∠CEO在△CDG與△CEH中∴△CDG≌△CEH(AAS)∴DG=HE由題易得△OCG與△OCH是全等的直角三角形,且OG=OH∴OD+OE=OD+OH+HE=OG+OH=2OH∴==2在Rt△OCH中,有∠COH=60°,OC=3,∴OH=,CH=∴∴=2=【點睛】本題考查全等三角形的性質(zhì)及判定,含30°直角三角形的性質(zhì)以及勾股定理,是一道綜合性問題,掌握相關(guān)知識點靈活應(yīng)用解題是本題的解題關(guān)鍵.例5.(2023湖北省宜城市八年級期末)如圖,已知∠AOB=120°,在∠AOB的平分線OM上有一點C,將一個60°角的頂點與點C重合,它的兩條邊分別與直線OA、OB相交于點D、E.(1)當∠DCE繞點C旋轉(zhuǎn)到CD與OA垂直時(如圖1),請猜想OE+OD與OC的數(shù)量關(guān)系,并說明理由;(2)當∠DCE繞點C旋轉(zhuǎn)到CD與OA不垂直時,到達圖2的位置,(1)中的結(jié)論是否成立?并說明理由;(3)當∠DCE繞點C旋轉(zhuǎn)到CD與OA的反向延長線相交時,上述結(jié)論是否成立?若成立,請給于證明;若不成立,線段OD、OE與OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.【答案】(1)詳見解析;(2)(1)中結(jié)論仍然成立,理由詳見解析;(3)(1)中結(jié)論不成立,結(jié)論為OE﹣OD=OC,證明詳見解析.【分析】(1)根據(jù)OM是∠AOB的角平分線,可得∠AOB=60°,則∠OCE=30°,再根據(jù)30°所對直角邊是斜邊的一半,得出OD=OC,同理:OE=OC,即可得出結(jié)論;(2)同(1)的方法得到OF+OG=OC,再根據(jù)AAS證明△CFD≌△CGE,得出DF=EG,則OF=OD+DF=OD+EG,OG=OE﹣EG,OF+OG=OD+OE,即可得出結(jié)論.(3)同(2)的方法得到DF=EG,根據(jù)等量代換可得OE﹣OD=OC.【詳解】(1)∵OM是∠AOB的角平分線,∴∠AOC=∠BOC=∠AOB=60°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=30°,∴∠OCE=∠DCE﹣∠OCD=30°,在Rt△OCD中,OD=OC,同理:OE=OC,∴OD+OE=OC,(2)(1)中結(jié)論仍然成立,理由:過點C作CF⊥OA于F,CG⊥OB于G,如圖,∴∠OFC=∠OGC=90°,∵∠AOB=120°,∴∠FCG=60°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且點C是∠AOB的平分線OM上一點,∴CF=CG,∵∠DCE=60°,∠FCG=60°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中結(jié)論不成立,結(jié)論為:OE﹣OD=OC,理由:過點C作CF⊥OA于F,CG⊥OB于G,如圖,∴∠OFC=∠OGC=90°,∵∠AOB=120°,∴∠FCG=60°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且點C是∠AOB的平分線OM上一點,∴CF=CG,∵∠DCE=60°,∠FCG=60°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.【點睛】本題考查了角平分線的性質(zhì)定理,全等三角形的判定和性質(zhì),直角三角形的性質(zhì).正確作輔助線是解題的關(guān)鍵.課后專項訓練1.(2023·黑龍江哈爾濱·九年級??计谥校┤鐖D,在中,,,將繞點A順時針方向旋轉(zhuǎn)60°到的位置,連接,則的度數(shù)為(
)A.15° B.20° C.30° D.45°【答案】C【分析】連接,證明為等邊三角形,然后進一步證明≌△,得到,即可求出的度數(shù).【詳解】解:如圖所示,連接,由題意得:,,∴為等邊三角形,∴,;在與中,∴≌△(SSS),∴,故選:C.【點睛】該題主要考查了旋轉(zhuǎn)變換的性質(zhì)、全等三角形的判定及其性質(zhì)的應(yīng)用等幾何知識點問題.解題的關(guān)鍵是作輔助線;靈活運用旋轉(zhuǎn)變換的性質(zhì)、全等三角形的判定來分析、解答.2.(2023·成都市·八年級期末)如圖,在邊長為4的正方形ABCD中,對角線AC,BD交于點O,E在BD上,連接CE,作EF⊥CE交AB于點F,交AC于點G,連接CF交BD于點H,延長CE交AD于點M,連接FM,則下列結(jié)論:①點E到AB,BC的距離相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,則BF=.正確的有()個.A.1 B.2 C.3 D.4【答案】C【分析】過E點作、,由正方形對角線平分每一組對角以及角平分線性質(zhì)可得點E到AB,BC的距離相等,故①正確;再證明(AAS)可得是等腰直角三角形,得,故②正確;然后延長MD至P,使,(SAS)再證明(SAS)即可得,故③正確;由全等三角形性質(zhì)和勾股定理列方程可求.【詳解】解:如圖1,過E點作、,∴,∵在正方形ABCD中,,,∴,即點E到AB,BC的距離相等,故①正確;;∴,由∵,∴,∴,∴(AAS)∴,∴,故②正確;如圖2,延長MD至P,使,連接,易證(SAS)∴,,∵,∴,∴,又∵,∴,∴,∴,,故③正確,在邊長為4的正方形ABCD中,,若,則,設(shè),則,,在中,∴,解得:,故;④錯誤,綜上所述,正確的①②③,故選C.【點睛】本題主要考查了正方形和三角形綜合知識,解題關(guān)鍵是構(gòu)造全都三角形轉(zhuǎn)換邊角關(guān)系.3.(2023·福建廈門·九年級??计谥校┤鐖D,(是常量).點P在的平分線上,且,以點P為頂點的繞點P逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,的兩邊分別與,相交于M,N兩點,若始終與互補,則以下四個結(jié)論:①;②的值不變;③四邊形的面積不變;④點M與點N的距離保持不變.其中正確的為()A.①③ B.①②③ C.①③④ D.②③【答案】B【分析】如圖作于點E,于點F,只要證明,即可一一判斷.【詳解】解:如圖所示:作于點E,于點F,,,,,,,平分,,,,在和中,,,,在和中,,,,故①正確,,定值,故③正確,定值,故②正確,的位置是變化的,之間的距離也是變化的,故④錯誤;故選:B.【點睛】本題考查了全等三角形的性質(zhì),角平分線的性質(zhì)定理,四邊形的面積等知識,解題的關(guān)鍵是學會添加輔助線,構(gòu)造全等三角形解決問題.4.(2023·福建·福州九年級期末)如圖,△ABC是等邊三角形,且,點D在邊BC上,連按AD,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接DE,BE.則△BED的周長最小值是_________.【答案】##【分析】根據(jù)旋轉(zhuǎn)可得AD=AE,∠DAE=60°,進而得出△ADE為等邊三角形,則DE=AD,根據(jù)“SAS”可證△ACD≌△ABE,可得CD=BE,而△BED的周長為BD+BE+DE=BD+CD+AD=BC+AD,當AD⊥BC時,AD最小,△BED的周長最小,然后求出AD的最小值即可解答.【詳解】解:∵線段AD繞點A順時針旋轉(zhuǎn)60°得到線段AE,∴AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴DE=AD,∵△ABC是等邊三角形,AB=4,∴AB=AC,∠BAC=60°,BC=AB=4,∴∠BAC=∠DAE,∴∠CAD=∠BAE,∴△ACD≌△ABE,∴CD=BE,∴△BED的周長為BD+BE+DE=BD+CD+AD=BC+AD,∴當AD最小時,△BED的周長最小,當AD⊥BC,時,AD最小,過A作AM⊥BC于M,∴BM=BC=2,∴AM=,∴AD的最小值為,∴△BED的周長最小值是4+.故答案為:4+.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定與性質(zhì),勾股定理等知識,將求△BED的周長最小值轉(zhuǎn)化求AD的最小值是解題的關(guān)鍵.5.(2023·廣東深圳·八年級期末)如圖,△ABC中,∠BAC=120°,AB=AC,點D為BC邊上一點.點E為線段CD上一點,且CE=2,AB=,∠DAE=60°,則DE的長為______.【答案】【分析】將繞點A逆時針旋轉(zhuǎn)至,連接ME,過M作于Q,過A作于F,由旋轉(zhuǎn)的性質(zhì)得,設(shè),則,,證明,得,最后利用勾股定理來解答.【詳解】解:如圖,將繞點A逆時針旋轉(zhuǎn)至,連接ME,過M作于Q,過A作于F,∵,,,AB=,∴,,∴,,∴,.在中,.∵,∴.設(shè),∴,,∴.∵,,∴,∴.∵.在和中,∴,∴,由勾股定理得:,∴,∴,即.故答案為:.【點睛】本題考查含30°角的直角三角形的性質(zhì),等腰三角形的性質(zhì),全等三角形有判定和性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì),作輔助線構(gòu)造直角三角形是求解本題的關(guān)鍵.6.(2023·吉林松原·九年級統(tǒng)考期中)如圖,點O是等邊三角形ABC內(nèi)的一點,,將△BOC繞點C順時針旋轉(zhuǎn)60°得△ADC,連接OD.(1)當時,°;(2)當時,°;(3)若,,,則OA的長為.【答案】(1)40;(2)60;(3)【分析】(1)證明△COD是等邊三角形,得到∠ODC=60°,即可得到答案;(2)利用∠ADC∠ODC求出答案;(3)由△BOC≌△ADC,推出∠ADC=∠BOC=150°,AD=OB=8,根據(jù)△COD是等邊三角形,得到∠ODC=60°,OD=,證得△AOD是直角三角形,利用勾股定理求出.【詳解】(1)解:∵CO=CD,∠OCD=60°,∴△COD是等邊三角形;∴∠ODC=60°,∵∠ADC=∠BOC=,∴∠ADC∠ODC=40°,故答案為:40;(2)∵∠ADC=∠BOC=,∴∠ADC∠ODC=60°,故答案為:60;(3)解:當,即∠BOC=150°,∴△AOD是直角三角形.∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,AD=OB=8,又∵△COD是等邊三角形,∴∠ODC=60°,OD=,∴∠ADO=90°,即△AOD是直角三角形,∴,故答案為:.【點睛】本題以“空間與圖形”中的核心知識(如等邊三角形的性質(zhì)、全等三角形的性質(zhì)與證明、直角三角形的判定、多邊形內(nèi)角和等)為載體,內(nèi)容由淺入深,層層遞進.試題中幾何演繹推理的難度適宜,蘊含著豐富的思想方法(如運動變化、數(shù)形結(jié)合、分類討論、方程思想等),能較好地考查學生的推理、探究及解決問題的能力.7.(2023·江蘇南京·九年級專題練習)(1)閱讀理解:如圖1,在正方形ABCD中,若E,F(xiàn)分別是CD,BC邊上的點,∠EAF=45°,則我們常會想到:把△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG.易證△AEF≌_______,得出線段BF,DE,EF之間的數(shù)量關(guān)系為____________;(2)類比探究:如圖2,在等邊△ABC中,D,E為BC邊上的點,∠DAE=30°,BD=3,EC=4,求線段DE的長;(3)拓展應(yīng)用:如圖3,在△ABC中,AB=AC,∠BAC=150°,點D,E在BC邊上,∠DAE=75°,若DE是等腰△ADE的腰長,請直接寫出BD:CE的值.【答案】(1);;(2);(3)或【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得,,,進而得到,由全等三角形的性質(zhì)可得,即可解答;(2)將繞點順時針旋轉(zhuǎn),得到,連接,過點作,交的延長線于點,進而證≌,得到,即可求出和,再根據(jù)勾股定理即可解答;(3)用的方法,分類討論是等腰的腰長,求出:的值即可.【詳解】解:(1)把繞點順時針旋轉(zhuǎn)得到,可知:,,,,,在和中,≌,,,,故答案為;.(2)如圖,將△ACE繞點A順時針旋轉(zhuǎn)60°,得到△ABF,連接DF,過點F作FG⊥BC,交CB的延長線于點G,如圖所示:∵△ABC是等邊三角形,∴∠CAB=∠ABC=∠C=60°,AB=AC,∵∠DAE=30°,∴∠CAE+∠BAD=30°,∴∠DAF=30°,又∵AD=AD,∴△ADE≌△ADF,∴DE=DF,∵∠ABF=∠ABC=∠C=60°,∠FBG=60°,∵BF=CE=4,∠G=90°,∴BG=BF=2,F(xiàn)G==,∴DG=5,∴在Rt△DFG中,DF=,∴線段DF的長為.(3)如圖,將△ACE繞點A順時針旋轉(zhuǎn)150°,得到△ABG,連接DG,過點D作DH⊥BG,交BG的于點H,∠DAE=75°,若DE是等腰△ADE的腰,∠ADE為頂角,則∠ADE=30°,∵AB=AC,∠BAC=150°,∴∠ABC=∠C=(180°150°)=15°,∴由旋轉(zhuǎn)性質(zhì)得△ABG≌△ACE,∴BG=CE,AG=AE,∠ABG=∠C=15°,∴∠DBG=30°,∵將△ACE繞點A順時針旋轉(zhuǎn)150°,得到△ABG,∴∠EAG=150°,∵∠DAE=75°,∴∠GAD=75°,∴∠ADE=30°,在△ADE和△ADG中,,∴△ADE≌△ADG,∴∠GDA=∠ADE=30°,∴∠GDE=60°,∵∠GDE=∠GBD+∠BGD,∴∠BGD=60°30°=30°,∴BD=DG,∴BH=GH=BG=CE,在Rt△BHD中,設(shè)HD=x,∵∠DBG=30°,∴BD=2x,由勾股定理得:BH=,∴BG=2,∴CE=2,∴BD:CE=:3;如圖將△ACE繞點A順時針旋轉(zhuǎn)150°,得到△ABM,連接DM,過點M作MN⊥BD,交BD于點N,∵∠DAE=75°,若DE是等腰△ADE的腰長,∠E為頂角,∴∠E=30°,∵AB=AC,∠BAC=150°,∴∠C=∠ABC=15°,∴∠CAE=15°,∴AE=CE=DE,∴∠BAD=150°75°15°=60°,由旋轉(zhuǎn)性質(zhì)可知△ABM≌△ACE,∴∠BAM=∠CAE=15°,∠ABM=∠ACE=15°,AM=AE,BM=CE,∴∠MAD=15°+60°=75°=∠DAE,在△MAD和△EAD中,,∴△MAD≌△EAD,∴DM=DE=CE=BM,∵MN⊥BD,∴BN=DN=BD,∵∠MBD=∠ABM+∠ABC=15°+15°=30°,∴在Rt△BNM中,設(shè)MN=a,∴BM=2a,∴CE=2a,由勾股定理得:BN=,∴BD=2a,∴BD:CE=2a:2a=:1=.【點睛】本題考查了四邊形的綜合題,正方形的性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.8.(2023.成都市八年級期中)在中,,,于點,(1)如圖1,點,分別在,上,且,當,時,求線段的長;(2)如圖2,點,分別在,上,且,求證:;(3)如圖3,點在的延長線上,點在上,且,求證:;【答案】(1);(2)見解析;(3)見解析.【分析】(1)根據(jù)等腰三角形的性質(zhì)、直角三角形的性質(zhì)得到AD=BD=DC=,求出∠MBD=30°,根據(jù)勾股定理計算即可;(2)證明△BDE≌△ADF,根據(jù)全等三角形的性質(zhì)證明;(3)過點M作ME∥BC交AB的延長線于E,證明△BME≌△AMN,根據(jù)全等三角形的性質(zhì)得到BE=AN,根據(jù)等腰直角三角形的性質(zhì)、勾股定理證明結(jié)論.【詳解】(1)解:,,,,,,,,,,,,由勾股定理得,,即,解得,,;(2)證明:,,,在和中,,;(3)證明:過點作交的延長線于,,則,,,,,,在和中,,,,.【點撥】本題考查的是等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、直角三角形的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.9.(2023.江蘇八年級期中)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD=BD.(2)探究證明:將直線MN繞點A順時針旋轉(zhuǎn)到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關(guān)系,并證明;【答案】(1);(2)AD﹣DC=BD;【分析】(1)根據(jù)全等三角形的性質(zhì)求出DC,AD,BD之間的數(shù)量關(guān)系(2)過點B作BE⊥BD,交MN于點E.AD交BC于O,證明,得到,,根據(jù)為等腰直角三角形,得到,再根據(jù),即可解出答案.【詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過點B作BE⊥BD,交MN于點E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.【點睛】本題主要考查全等三角形的性質(zhì),等腰直角三角形的性質(zhì)以及圖形的應(yīng)用,正確作輔助線和熟悉圖形特性是解題的關(guān)鍵.10.(2023.江蘇八年級期中)如圖,已知∠DCE與∠AOB,OC平分∠AOB.(1)如圖1,∠DCE與∠AOB的兩邊分別相交于點D、E,∠AOB=∠DCE=90°,試判斷線段CD與CE的數(shù)量關(guān)系,并說明理由.以下是小宇同學給出如下正確的解法:解:CD=CE.理由如下:如圖1,過點C作CF⊥OC,交OB于點F,則∠OCF=90°,…請根據(jù)小宇同學的證明思路,寫出該證明的剩余部分.(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.(3)若∠AOB=120°,∠DCE=60°.①如圖3,∠DCE與∠AOB的兩邊分別相交于點D、E時,(1)中的結(jié)論成立嗎?為什么?線段OD、OE、OC有什么數(shù)量關(guān)系?說明理由.②如圖4,∠DCE的一邊與AO的延長線相交時,請回答(1)中的結(jié)論是否成立,并請直接寫出線段OD、OE、OC有什么數(shù)量關(guān)系;如圖5,∠DCE的一邊與BO的延長線相交時,請回答(1)中的結(jié)論是否成立,并請直接寫出線段OD、OE、OC有什么數(shù)量關(guān)系.解:(1)∵OC平分∠AOB,∴∠AOC=∠BOC=45°,且∠OCF=90°,∴∠OFC=45°=∠BOC,∴OC=FC,∵∠DCE=∠OCF=90°,∴∠DCO=∠ECF,且CO=CF,∠AOC=∠CFE=45°,∴△CDO≌△CEF(ASA)∴CD=CE(2)如圖2,過點C作CM⊥OA,CN⊥OB,垂足分別為M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,在四邊形ODCE中,∠AOB+∠DCE+∠CDO+∠CEO=360°,又∵∠AOB=∠DCE=90°,∴∠CDO+∠CEO=180°,又∵∠CDO+∠CDM=180°,∴∠CEO=∠CDM,且∠CMD=∠CNE,CM=CN,∴△CMD≌△CNE(AAS),∴CD=CE.(3)①(1)中的結(jié)論仍成立.OE+OD=OC.理由如下:如圖3,過點C作CM⊥OA,CN⊥OB,垂足分別為M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,∠AOC=∠BOC=60°,在四邊形ODCE中,∠AOB+∠DCE+∠CDO+∠CEO=360°,又∵∠AOB+∠DCE=60°+120°=180°,∴∠CDO+∠CEO=180°,又∵∠CEO+∠CEN=180°,∴∠CDO=∠CEN,且CM=CN,∠CMD=∠CNE,∴△CMD≌△CNE(AAS),∴CD=CE,DM=EN.∴OE+OD=OE+OM+DM=OE+OM+EN=ON+OM.∵∠AOC=60°,CM⊥AO,∴∠MCO=30°,∴,同理可得ON=OC,∴.②在圖4中,(1)中的結(jié)論成立,OE﹣OD=OC,如圖4,過點C作CM⊥OA,CN⊥OB,垂足分別為M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,∠AOC=∠BOC=60°,∵∠COE+∠CEO+∠DCE+∠OCD=180°,∴∠OCD+∠CEO=60°,∵∠AOC=∠CDO+∠OCD=60°,∴∠CDO=∠CEN,且CM=CN,∠CMD=∠CNE,∴△CMD≌△CNE(AAS),∴CD=CE,DM=EN.∴OE﹣OD=ON+NE﹣(MD﹣OM)=ON+OM.∵∠AOC=60°,CM⊥AO,∴∠MCO=30°,∴,同理可得ON=OC,∴OE﹣OD=ON+OM=OC;在圖5中,(1)中的結(jié)論成立,OD﹣OE=OC,如圖5,過點C作CM⊥OA,CN⊥OB,垂足分別為M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,∠AOC=∠BOC=60°,∵∠COA+∠CDO+∠DCE+∠OCE=180°,∴∠OCE+∠CDO=60°,∵∠NOC=∠CEO+∠OCE=60°,∴∠CDO=∠CEO,且CM=CN,∠CMD=∠CNE,∴△CMD≌△CNE(AAS),∴CD=CE,DM=EN.∴OD﹣OE=DM+OM﹣(EN﹣ON)=ON+OM.∵∠AOC=60°,CM⊥AO,∴∠MCO=30°,∴,同理可得ON=OC,∴OD﹣OE=ON+OM=OC;11.(2023春·江蘇·八年級專題練習)(1)如圖①,在四邊形中,,,,分別是邊,上的點,且.請直接寫出線段,,之間的數(shù)量關(guān)系:___________;(2)如圖②,在四邊形中,,,,分別是邊,上的點,且,(1)中的結(jié)論是否仍然成立?請寫出證明過程;(3)在四邊形中,,,,分別是邊,所在直線上的點,且.請畫出圖形(除圖②外),并直接寫出線段,,之間的數(shù)量關(guān)系.【答案】(1);(2)成立,理由見解析;(3)圖形見解析,【分析】(1)延長到,使,連接.證明,則,,,證明,得出,由此可得,;(2)思路和作輔助線的方法同(1);(3)根據(jù)(1)的證法,可得出,,那么.【詳解】解:(1)延長至,使,連接,∵,,,∴,∴,,∴,∴,在和中,∵,∴,∴,∵,且∴,故答案為:.()解:()中的結(jié)論仍成立,證明:如圖所示,延長至,使,∵,,∴,在和中,,∴,∴,,∵,∴,∴,即,在和中,,∴,∴,即.(),證明:如圖所示,在上截取使,連接,∵,,∴,在和中,,∴,∴,,∴,∴,在和中,
,∴,∴,∵,且,∴.【點睛】此題主要考查了三角形全等的判定與性質(zhì),通過全等三角形來實現(xiàn)線段的轉(zhuǎn)換是解題關(guān)鍵,沒有明確的全等三角形時,要通過輔助線來構(gòu)建與已知和所求條件相關(guān)聯(lián)的全等三角形.12.(2023·江蘇·八年級專題練習)等邊的兩邊、所在直線上分別有兩點、,為外一點,且,,.當點、分別在直線、上移動時,探究、、之間的數(shù)量關(guān)系以及的周長與等邊的周長的關(guān)系.(1)如圖①,當點、在邊、上,且時,、、之間的數(shù)量關(guān)系式為______;此時的值是______.(2)如圖②,當點、在邊、上,且時,猜想(1)問的兩個結(jié)論還成立嗎?寫出你的猜想并加以證明.(3)如圖③,當點、分別在邊、的延長線上時,若,試用含、的代數(shù)式表示.【答案】(1),;(2)結(jié)論仍然成立,證明見解析;(3).【分析】(1)由DM=DN,∠MDN=60°,可證得△MDN是等邊三角形,又由△ABC是等邊三角形,CD=BD,易證得Rt△BDM≌Rt△CDN,然后由直角三角形的性質(zhì),即可求得BM、NC、MN之間的數(shù)量關(guān)系BM+NC=MN,此時;(2)在CN的延長線上截取CM1=BM,連接DM1.可證△DBM≌△DCM1,即可得DM=DM1,易證得∠CDN=∠MDN=60°,則可證得△MDN≌△M1DN,然后由全等三角形的性質(zhì),即可得結(jié)論仍然成立;(3)首先在CN上截取CM1=BM,連接DM1,可證△DBM≌△DCM1,即可得DM=DM1,然后證得∠CDN=∠MDN=60°,易證得△MDN≌△M1DN,則可得NC﹣BM=MN;然后根據(jù)的周長,表示出AB的長,然后根據(jù)的周長,應(yīng)用等量代換即可求解.【詳解】解:(1)如圖①,BM、NC、MN之間的數(shù)量關(guān)系BM+NC=MN.此時.理由:∵DM=DN,∠MDN=60°,∴△MDN是等邊三角形,∵△ABC是等邊三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等邊三角形,∵AB=AM+BM,∴AM:AB=2:3,∴;(2)猜想:結(jié)論仍然成立.證明:在NC的延長線上截取CM1=BM,連接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周長為:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴;(3)證明:在CN上截取CM1=BM,連接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N.∴NC﹣BM=MN.∵等邊的周長為,∴,的周長.故答案為:.【點睛】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知等邊三角形的性質(zhì)及全等三角形的判定定理.13.(2023·廣東廣州·九年級??计谥校┮阎赫叫蜛BCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.當∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),易證BM+DN=MN.(1)當∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖2),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;(2)當∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;(3)若正方形的邊長為4,當N運動到DC邊的中點處時,求BM的長.【答案】(1)BM+DN=MN,見解析;(2)DN﹣BM=MN,見解析;(3)【分析】(1)把△ADN繞點A順時針旋轉(zhuǎn)90°,可得B、E、M三點共線,即可得到△AEM≌△ANM,從而證得ME=MN,可得結(jié)論;(2)在線段DN上截取DQ=BM,首先證明△ADQ≌△ABM,得DQ=BM,再證明△AMN≌△AQN(SAS),得MN=QN,可得結(jié)論;(3)設(shè),由勾股定理可求解即可.【詳解】解:(1)BM+DN=MN.理由如下:如圖2,把△ADN繞點A順時針旋轉(zhuǎn)90°,得到△ABE,∴∠ABE=∠ADN=90°,AE=AN,BE=DN,∴∠ABE+∠ABC=180°,∴點E,點B,點C三點共線,∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,在△AEM與△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.理由如下:在線段DN上截取DQ=BM,如圖3在△ADQ與△ABM中,,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN;(3)如圖4,設(shè)∵正方形的邊長為4,點N是BC的中點,∴CN=DN=2,∵DN+BM=MN,∴,∵MN2=CN2+MC2,∴,解得即.【點睛】此題考查了旋轉(zhuǎn)的綜合應(yīng)用,涉及了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì),構(gòu)造出全等三角形.14.(2023·四川達州·八年級統(tǒng)考期末)問題發(fā)現(xiàn):如圖,在中,,為邊所在直線上的動點(不與點、重合),連結(jié),以為邊作,且,根據(jù),得到,結(jié)合,得出,發(fā)現(xiàn)線段與的數(shù)量關(guān)系為,位置關(guān)系為;(1)探究證明:如圖,在和中,,,且點在邊上滑動(點不與點、重合),連接.①則線段,,之間滿足的等量關(guān)系式為_____;②求證:;(2)拓展延伸:如圖,在四邊形中,.若,,求的長.【答案】(1)①BC=CE+CD;②見解析;(2)AD=6.【分析】(1)①根據(jù)題中示例方法,證明△BAD≌△CAE,得到BD=CE,從而得出BC=CE+CD;②根據(jù)△BAD≌△CAE,得出∠ACE=45°,從而得到∠BCE=90°,則有DE2=CE2+CD2,再根據(jù)可得結(jié)論;(2)過點A作AG⊥AD,使AG=AD,連接CG、DG,可證明△BAD≌△CAG,得到CG=BD,在直角△CDG中,根據(jù)CD的長求出DG的長,再由DG和AD的關(guān)系求出AD.【詳解】解:(1)①如圖2,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,
∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,
∴BC=BD+CD=CE+CD,故答案為:BC=BD+CD=CE+CD.②∵△BAD≌△CAE,∴∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如圖3,過點A作AG⊥AD,使AG=AD,連接CG、DG,則△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=13,在Rt△CGD中,∠GDC=90°,,∵△DAG是等腰直角三角形,∴,∴AD==6.【點睛】本題是四邊形的綜合題,考查的是全等三角形的判定和性質(zhì)、勾股定理,掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.15.(2023·廣東惠州·八年級??计谥校榈冗吶切危?,于點.為線段上一點,.以為邊在直線右側(cè)構(gòu)造等邊.連結(jié),為的中點.(1)如圖1,與交于點,①連結(jié),求線段的長;②連結(jié),求的大?。?)如圖2,將繞點逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為.為線段的中點.連結(jié)、.當時,猜想的大小是否為定值,并證明你的結(jié)論.【答案】(1)①;②;(2),證明見解析【分析】(1)①根據(jù)等邊三角形的性質(zhì),,可得,是斜邊上的中線,勾股定理在中可求得的長,進而求得的長;②根據(jù)①的結(jié)論可得,根據(jù),即可求得的度數(shù);(2)連接,證明,進而可得,則,進而根據(jù)為的中點,為的中點,為的中點,根據(jù)三角形中位線定理可得,進而可得【詳解】(1)①是等邊三角形,,是等邊三角形,為的中點②如圖,連接,;(2),理由如下,如圖,連接,為等邊三角形,,則為的中點,為的中點,為的中點【點睛】本題考查了等邊三角形的性質(zhì),勾股定理,三線合一,直角三角形斜邊上的中線等于斜邊的,勾股定理,中位線定理,三角形全等的性質(zhì)與判定,旋轉(zhuǎn)的性質(zhì),綜合運用以上知識是解題的關(guān)鍵.16.(2023春·重慶巴南·八年級統(tǒng)考期末)在正方形中,點是邊上的中點,連接,.
(1)如圖1,過點作交的延長線于點,連接,求的面積;(2)如圖2,點是延長線上的一點,連接,過點作,,連接.點是的中點,分別連接,,求證:;(3)如圖3,點是直線上的一動點,連接,過點作,,連接.點是的中點,連接,.當?shù)闹底钚r,直接寫出的面積.【答案】(1)(2)證明見解析(3)【分析】(1)利用證明得,從而求出,由此即可求出的面積.(2)過點作交于點,連接,利用一線三直角模型可得(),從而可得:,再證明可得為等腰直角三角形,,進而得出結(jié)論;(3)由已知可得:是等腰直角三角形,進而可得,,即當E點在AM上時,最小,再由三角形全都轉(zhuǎn)換線段關(guān)系得到,由勾股定理求出即可解題.【詳解】(1)解:∵;∴;∵四邊形是正方形;∴,;∵點是的中點,;∴;∵;∴;∴;∴;∴;(2)證明:如解(2)圖,過點作交于點,連接.
∵;∴∴;∵;∴;∴,;∵點是的中點,;∴,:∴;∴;∴,;∴;∴;∴;(3)解:∵,,∴是等腰直角三角形,,又∵點是的中點,∴,∴,∴當E點在上時,最小,如解(3)圖,過點作交的延長線于點,同理(1)可得:;∴;,,∴,又∵∴,又∵,∴,∴,∴,在中,,,∴,解得:,∴【點睛】本題主要考查了正方形的性質(zhì)與判定,勾股定理,全等三角形的性質(zhì)與判定,解題(3)的關(guān)鍵在于能夠證明.17.(2022·福建福州·九年級??计谥校┱叫蜛BCD和正方形AEFG的邊長分別為3和1,將正方形AEFG繞點A逆時針旋轉(zhuǎn).(1)當旋轉(zhuǎn)至圖1位置時,連接BE,DG,則線段BE和DG的關(guān)系為;(2)在圖1中,連接BD,BF,DF,求在旋轉(zhuǎn)過程中BDF的面積最大值;(3)在旋轉(zhuǎn)過程中,當點G,E,D在同一直線上時,求線段BE的長.【答案】(1),;(2)7.5;(3)或【分析】(1)利用正方形的性質(zhì)證明即可證得結(jié)論;(2)連接,,,,,設(shè)交于點.利用勾股定理求出,,由推出當點F,A,K在同一直線上時,點到的最大距離,由此可得結(jié)論;(3)分兩種情形:如圖中,當,,共線時,連接交于.如圖中,當,,共線時,連接交于.利用勾股定理求出,可得結(jié)論.【詳解】解:(1),,理由如下:如圖1中,設(shè)交于點,交于點.四邊形、四邊形都是正方形,,,,,,在和中,,,,,,,,故答案為:BE=DG,BE⊥DG;(2)如圖1中,連接,,,,,設(shè)交于點.四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 材料疲勞斷裂影響因素研究重點基礎(chǔ)知識點
- 食用油火災(zāi)應(yīng)急處置預(yù)案(3篇)
- 火災(zāi)應(yīng)急預(yù)案范文文庫(3篇)
- 動態(tài)編程與遞歸解法試題及答案
- 網(wǎng)絡(luò)管理員職業(yè)素養(yǎng)提升及試題答案
- 企業(yè)品牌建設(shè)與戰(zhàn)略目標試題及答案
- 編程語言趨勢及其對職業(yè)發(fā)展的影響試題及答案
- 2025年VB考試重要資料與試題及答案
- 網(wǎng)絡(luò)管理員職業(yè)要求與考試試題答案
- 2025年軟考增分技巧探討試題及答案
- 樂山大佛完整版本
- 校長在班主任培訓會上的講話范文
- 北京市海淀區(qū)2023-2024學年五年級上學期數(shù)學期末試卷
- GB/T 19609-2024卷煙用常規(guī)分析用吸煙機測定總粒相物和焦油
- 建筑工程一切險保險單
- 浙江寧波市杭州灣大橋發(fā)展有限公司招聘筆試題庫2024
- 2024年內(nèi)蒙古呼和浩特市中考英語試卷真題(含答案解析)
- 多視圖靜態(tài)異常檢測
- 醫(yī)療垃圾分類及轉(zhuǎn)運院感考核試題與答案
- 核反應(yīng)堆熱工分析課程設(shè)計
- AQ 1011-2005 煤礦在用主通風機系統(tǒng)安全檢測檢驗規(guī)范(正式版)
評論
0/150
提交評論