




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Incollaborationwith
BostonConsultingGroup
AutonomousVehicles:
TimelineandRoadmapAhead
WHITEPAPERAPRIL2025
Images:GettyImages
Contents
Foreword3
Executivesummary4
Introduction5
1
Assisted,automatedandautonomouspersonalvehicles7
2
Robotaxisandroboshuttles11
3
Autonomoustrucks14
4
Anoverarchingindustryagenda18
Conclusion21
Contributors22
Endnotes24
Disclaimer
Thisdocumentispublishedbythe
WorldEconomicForumasacontributiontoaproject,insightareaorinteraction.
Thefindings,interpretationsand
conclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedand
endorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarily
representtheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,
Partnersorotherstakeholders.
?2025WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformation
storageandretrievalsystem.
AutonomousVehicles:TimelineandRoadmapAhead2
April2025
AutonomousVehicles:TimelineandRoadmapAhead
Foreword
JeremyJurgensManagingDirector,
WorldEconomicForum
Overthousandsofyearstransporthasalways
connectedpeopleandexpandedtheiraccess
toopportunities,consistentlygrowingeconomies
andadvancingsocieties.Withinthatongoing
evolution,autonomousvehicles(AVs)represent
oneoftransport’smostanticipateddevelopments,offeringthepotentialtoimproveroadsafety,enhancelogisticsandenablenewmobilityservices.Thereare,however,significanttechnological,regulatoryand
operationalchallengestorealizingthosebenefits.AVsmustalsobecarefullyintegratedintoexistingtransportecosystemsasmixedtrafficconditionswillcreatecomplexitiesforyearstocome.
Itiscrucialthatthesector’sstakeholderscan
baseinformeddecisionsonrealisticexpectations,yetpredictionsaboutthedeploymenttimelinefor
autonomousvehicleshavetendedtobeoverly
optimistic.Whilevehicleautomationtechnologyhasadvancedconsiderably,itslarge-scaleintegration
willtakelongerthanmosthaveanticipated.This
whitepaperaimstoprovideamoregrounded
perspectiveontheadoptiontimeline,addressing
threekeyusecasesofvehicleautonomybetween2025and2035:personalvehicles,robotaxisand
autonomoustrucks.Itstrivestoanswersomeof
thekeyquestionsofpolicymakers,businessleadersandthepublicabouttheseevolvingtechnologies.
NikolausLang
ManagingDirectorandSeniorPartner,
BostonConsultingGroup
Thetimelineforadoptingtheseinnovations
haswidesocietalimplicationsbeyondtransportplanning,andaddressingthesechallenges
atanearlystageisessentialtoasuccessful
rollout.Forexample,manyworkersmaystruggle
toadapttochangingjobrequirements.Anaccuratetimelinecanhelpdecision-makersbetterprepare
workforcereskillingprogrammes.Dataprivacyandcybersecuritymustalsobeprioritized;autonomousvehiclesgathervastamountsofreal-timeand,
tosomeextent,sensitivedata,aboutwhatis
happeninginthevehicleanditssurroundings.
Equitableaccesstovehicleautomationtechnologyiscritical,too:AVdevelopmentmustenablemoreholisticandinclusivemobilitysystemsinstead
ofexacerbatingexistingtransportinequalities.
Widespreadadoptionofautonomousvehicleswillremainslow,butthedecisionsmadetodaywill
shapehowthistechnologyintegratesintosocietytomorrow.Governments,industryleadersandcivilsocietyneedtocollaboratetoensurethatsocietalneedsaremetandthatautonomousvehicles
contributetoamoreefficient,sustainableandinclusivemobilitylandscape.
AutonomousVehicles:TimelineandRoadmapAhead3
Executivesummary
Autonomousvehicles:Scalingforimpactwhileaddressingremainingchallenges.
Earlydeploymentsofautonomousvehiclesare
alreadyontheroads.However,itisbecoming
apparentthatlarge-scalerolloutwillbeslowerthanonceanticipated.Whilepreviousandevensome
currentforecastsstatethatautonomousvehicleswillbewidelyadoptedduringthe2020s,the
analysesofthiswhitepapersuggestmainstreamdeploymentwillbeslowerthanthatgiventhemanychallengesandinherenttechnological,regulatoryandeconomiccomplexities.
Despitethis,therationaleforAVadoptionremainscompelling,drivenbysubstantialpotentialbenefitsincludingenhancedsafety,improvedefficiencyandlowercosts.Thiswhitepaperprovidesarefined
forecastfordeploymentandidentifieskeyremaininggapsandactionsforacceleratingthatdeploymentsafely.Itexploresthreemainusecases:personal
vehicles,robotaxisandautonomoustrucks.Thekeyinsightsoneachoftheseareasfollows:
–Whilepersonalvehicleswillprogressively
transitiontowardhigherlevelsofautomation,L2andL2+systemswilldominatethisusecaseforthenextdecadeduetotheircost-effectivenessandregulatoryreadiness.L3adoptionwill
remainlimitedduetosafetyrisks,liability
concernsandhighcosts,andL4deploymentwillbenicheduringthistimeframe:onlyaround4%ofnewpersonalcarssoldby2035are
expectedtofeatureL4capabilities.China
isforecasttoadoptL2+andL3/L4vehicles
mostquickly,drivenbystrongconsumer
demand,aregulatorypushandanecosystemthatencouragesinnovation.(SeeBox1foranexplanationofthelevelsofautomation.)
–Robotaxishavealreadydemonstrated
technologicalfeasibility,withlarge-scale
deploymentsrunninginselectedUSand
Chinesecities.However,thehighcostsof
softwaredevelopment,infrastructureset-up
andscalingcontinuetoslowdeployment.By
2035,robotaxisarelikelytobepresentinlargenumbersacross40to80citiesglobally,mostlyinChinaandtheUnitedStates.Untilatleast2030,Europeisexpectedtoremaincautiousabouttherolloutofrobotaxis.Europeislikelytoprioritize
small,controlledpilotsandfocusonintegratingroboshuttleswithpublictransportsystems
instead.Large-scalerobotaxi(androboshuttle)deploymentswillleadtomodalshifts,affectingnotonlytaxiandtraditionalride-hailingbutalsopersonalcarandpublictransportuse.
–Autonomoustruckingpresentsastrongcase
forautonomy.Comparedtotraditionaltrucking,itintroducesanewvaluepropositionthatgoesbeyondadvantagesinefficiencyandtotalcostofownership.Severalcompanieshavestartedcommercialoperations,and2025isexpected
tobeanimportantyearforautonomoustruckingdeployments.Amongthedifferentuse-cases,
hub-to-hubtruckinghasthemostpromiseforautomation.TheUnitedStatesisexpectedto
leadadoptionforthisusecase:itisprojected
thatautonomoustruckswillaccountforupto
30%ofnewtrucksalesintheUSby2035.In
Europe,internationalbordersposechallengesforlong-haulapplications,andChina’sweakercostbenefitsmaylimitdeploymentunlesspolicyinterventionsaccelerateprogress.
Theforecastsinthiswhitepaperaimto
accountforexpecteddevelopments.However,technologicalbreakthroughs,suchasthe
successfuldeploymentofmap-freeandvision-
onlyL3/L4systems,ormassiveadditionalfundinginjectionscouldsignificantlyaccelerateadoptionbeyondtheseprojections.
Tofurtherspeedupthedeploymentofvehicle
autonomy,theindustryneedstokeepworking
onfivedifferentfronts.First,bringthepublicon
boardbycommunicatingconsistentmessages
andbuildingconsumertrust.Second,continue
leveragingadvancesintechnology,includingAI
andcybersecuritybreakthroughs,totacklethe
currentshortcomingsurroundingsafety,usabilityandscalability.Third,developsustainablebusinessmodelsthatfosterlong-termviability.Fourth,
co-createregulationstohelppolicymakersbetterunderstandtheprogressandreadinessofvehicleautomationtechnology.And,finally,collaboratewithinandacrossindustriestobetterfacilitate
large-scaledeployments.
AutonomousVehicles:TimelineandRoadmapAhead4
Introduction
Autonomousvehiclesmovebeyond
initialhypeanddisillusionmenttowardsreal-worlddeployment.
Thiswhitepaperaimstoshedlightontheevolving
vehicleautonomytimelinebetweennowand2035.
Theforecastsdevelopedherearebasedonanalysisgroundedinfivekeydimensions:
1.Consumertrustandinterest
2.ProjectedADAS/ADpricesandconsumers’willingnesstopay
3.Technologicalobstaclesandthetimeframeforovercomingthem
4.Currentregulatorystatusandanticipatedregulatorydevelopments
5.Ecosystemdevelopmentstosupportscaling
Whilethefirsttwodimensionshelpdetermine
thepotentialdemand,thelastthreeconcernthepotentialsupply.Thesedimensionsalsoformthebasisoftheactionsoutlinedinthispapertosafelyscalevehicleautonomy.
Theforecastsinthiswhitepaperaimtoaccountforexpectedprogress.However,technological
breakthroughs,suchasthesuccessful
deploymentofmap-freeandvision-onlyL3/L4
systems,ormassiveadditionalfundinginjectionscouldsignificantlyaccelerateadoptionbeyondtheseprojections.
Untilveryrecently,forecastsstatedthat
autonomousvehicleswouldbeeverywhere
inthe2020s.However,itisnowevidentthat
technological,regulatoryandeconomicchallengesmeanadoptionwillhappenmoregradually.
Despitethedifficulties,therationaleforAVsremainsstrong,drivenbypotentialsafetyandefficiency
benefits,amongothers.Roadsafetyremainsoneofthemostpressingconcernsinglobaltransport,andadvanceddriverassistanceandautonomousdriving(ADAS/AD)couldhelpreducethe1.2millionroadfatalitiesthatoccureachyear.1Themany
efficiencygainsincludeachievinghighervehicle
utilizationratesthroughreducedidletimeand
maximizedvehicleloads.Theseadvantagesapplytobothpassengertransport,throughridepooling,andgoodstransport,throughoptimizedfreight
movement.Bettertransportoptionsmayalsospurashiftawayfrompersonalvehicledependence,
leadingtoamoresustainablemobilitysystem.
Thiswhitepaperaimstoshedlightontheevolvingvehicleautonomytimelinebetweennowand2035acrossthreekeyusecases:personalvehicles,
robotaxisandautonomoustrucks(seeFigure1).
Special-purposevehiclesoperatinginenclosed
facilities,suchasthoseforminingoragriculture,arealsohighlysuitedforautomationbutfalloutsideofthescopeofthiswhitepaper.
FIGURE1Comparativeoverviewofthefourmainvehicleautonomysegments
Specialpurpose
autonomousvehicles
–Improvesafetyinhazardousenvironments
–Enhanceef?ciencyforspecializedtasks
Specialist?rmsownandoperate
Focusofthiswhitepaper
Personalvehicles
Autonomoustrucks
–Addresscriticaldrivershortages
–Increaseef?ciencyand
?exibilitywith24/7uptime
Fleetprovidersownandoperate
–Increaseroadsafetybyreducinghumanerror
–Enhanceconvenienceduringtravel
Privatelyownedorleased
Robotaxisandroboshuttles
Expectedbene?ts
–Enhancethe?exibilityofpublictransport
–Reduceoperationalcostsandimproveaccessibility
Ownership
Fleetprovidersownandoperate
Techlevel*Gradualdevelopmentfrom
ADAS(L0-L2+)toAD(L3/L4)
Autonomy-?rstsystemdevelopment(L4)
Autonomy-?rstsystemdevelopment(L4)
Autonomy-?rstsystemdevelopment(L4)
DomainHighway,suburbanandurbanSuburbanandurbanHighwayandsuburbanSpecialenvironments
*SeeBox1formoreinformationontechnologylevels.
AutonomousVehicles:TimelineandRoadmapAhead5
BOX1DefinitionofADAS/ADlevels
wheelintheirhands,keeptheireyesontheroadorfocus
theirmindonthedrivingenvironment(e.g.,whethersleepingisallowed).
Level4isthefirstlevelconsideredautonomous.Thatis,
wherethedriverhasnodrivingtasksintheoperatingdesigndomainspecified.ForL4inprivatevehicles,thiswhitepaperdifferentiatesbetweenL4HighwayandL4Urban,since,duetothegreatercomplexitiesofurbanareas,ADcapabilitiesareexpectedtobecomecommonplacesoonerinhighwaysettings.
Vehicleautomationisclassifiedintodifferentlevels
thatdifferentiatetheextentofautomation,thedriver’s
involvementandwheretherespectivesystemcanbeused–theso-calledoperationaldesigndomain(ODD).This
classificationreflectsthetechnologicalprogressandhelps
ensureclarityaboutthetechnology’scapabilitiesandliability.
Tomakethetechnologicaldifferencesevenclearer,the
levelsarefurthersubdividedaccordingtothedriver’srequiredactivities,namelywhetheritisrequiredtoholdthesteering
Assisted
Automated
Autonomous
Samplefeatures
–Automaticemergencybraking
–Lanedeparturewarning
–Adaptivecruisecontrol(ACC)
–Lane-keepingassistsystem(LKAS)
Explanation
–Safetywarningsor
temporaryassistance
–Driverretainsalldrivingtasks
L0
Manual
–SteeringORspeedcontrolbythesystem
–Driverremainshands-onandeyes-on
L1
Assisteddriving
–SteeringANDspeedcontrolbythesystem
–Driverremainshands-onandeyes-on
–CoupledACC&LKAS
L2
Partially
automateddriving
–SteeringANDspeedcontrolbythesystem
–Driverremainseyes-on
–Systemdrivesunderpre-definedconditions
–Driverneedstostepin
within~10secondsuponsystemrequest
–Systemdrivesunderpre-definedconditions
–Notake-overbythedriverisrequired(withintheODD)
–Systemdrivesinallconditions
–Notake-overbythedriverisrequired
L2+/++
–Navigateon
Autopilot(NOA)
Drivermustbeableto
immediatelytakefull
controlwheneverrequested
–Trafficjampilot
–Valetparking
Criticalchange:liabilityswitchesfromthedrivertothesystem
–AutonomousdrivinginapprovedODDs
Candifferentiate
betweenL4HighwayandL4Urban,duetotheir
differentcomplexities
–Ubiquitousautonomousdriving
Advancedpartially
automateddriving
L3
Automated
drivingunderconditions
L4
Autonomousdrivingunderconditions
L5
Autonomousdrivinginallconditions
SixlevelsofADAS/ADsystems
Hands-on
Eyes-on
Mind-on
System
.Driver
Source:Authors,adaptedfromthesixlevelsofvehicleautomationdefinedinSAEJ3016.2
AutonomousVehicles:TimelineandRoadmapAhead6
4%
Only4%ofnew
personalvehiclessoldin2035areexpectedtofeatureL4capabilities.
Assisted,automatedandautonomous
personalvehicles
PrivateADAS/ADadoptionisan
evolution,withpartiallyautomatedvehicles,notautonomousvehicles,dominatingthenextdecade.
PersonalvehiclesrepresentthelargestAV
marketsegmentbyvolume.Thismeansthat
automationadvancesinthisareaarecrucial
forimprovingroadsafetyandenhancingtravel
convenience.However,vehicleautomationin
personalvehiclesisanincrementalevolution
ratherthanadisruptiverevolution.Whilemany
projectionshavelongstateddriverlessvehicles
areimminent,thiswhitepaperfindsthat,overthenextdecade,personalvehicleswillbenefitprimarilyfromadvancedassistancefeaturesratherthan
autonomy.Detailedexpectationsfortheuptake
ofeachlevelbetween2023and2035areshown
inFigure2.Aswellaspersonalcars,Figure2alsoshowstheshareofL4robotaxis(moreonrobotaxisinthenextchapter).
Forecastsfortheuptakeofeachautomationlevel
Assisteddrivingtechnologies,particularlyatL2
andL2+levels,areexpectedtobethemost
dominanttechnologiesinnewcarssoldin2030
andbeyond.Thisisduetobroadmarketavailability,lowregulatoryhurdlesandlowersystemcosts
thanforL3/L4.Asaresult,driversofmostnew
carswillstillberequiredtokeeptheirhandson
thesteeringwheelandtheireyesontheroadlongafter2035.ThetransitionfromL2toL2+willalsobegradual,withL2systemsstayingmorepopularduringtheupcomingdecade.Thisisprimarilyduetocostconstraints:whileL2systemsarecurrentlyavailableforlessthan$700,L2+systemscancostupto$3,000.
L3vehicles–whereliabilitymovesfromthedrivertothesystem,yetthedriverstillneedstobeabletoregaincontrolinashorttimeframeifrequired–willremainatransitionalofferingratherthana
long-termsolution(asidefromspecificusecasessuchasvaletparkingortrafficjams).Therearefourkeyconstraintslimitingthewidespreadadoption
ofL3vehiclesthatarealsobeyondthetimelineconsideredinthiswhitepaper:
1.Safetyrisks:atL3,driversarerequired
toretakecontrolwithinaround10seconds,creatingpotentialsafetyconcernsinreal-worldconditions.
2.Liabilityconcerns:theshiftfromdriverresponsibilitytoOEMliability,withthe
relatedissueofdeterminingwhowasdriving,makesmanufacturershesitanttoscaleL3
inpublicenvironments.
3.Highcosts:L3requiresasimilartechstacktoL4,leadingtonearlyidenticalsystemcoststhattypicallyrangefrom$7,000to$10,000.
4.Limitedvalue:consumersmightexpectfullautonomy,buttheyarenotallowedtofullydisengageastheymayberequiredtotakeoverquickly.
Forthesereasons,manyOEMscontinueto
prioritizeL2/L2+advancementsoverL3,meaningthatby2035andpotentiallybeyond,L3vehicleswillstillconstituteonlyasmallfractionofsales.
Forpersonalvehicles,L4autonomyremains
significantlyconstrainedbybothtechnicalandregulatorybarriers.AtL4,ifthevehicleoperateswithinitsdefinedODD,thedriverisentirely
uninvolved,andthevehiclecanbringitselftoa
safestopifrequired.Only4%ofvehiclessold
in2035areexpectedtofeatureL4capabilities,
reflectingtheslowandselectivedeploymentoftrueautonomoustechnologyinthisarena.Inaddition,giventheadditionaloperationalchallengesinurbansettings,someofthesecapabilitieswillonlybe
availableforhighwayenvironments.Furthermore,inurbansettings,fleet-basedmodels,such
asrobotaxiservices,mayprevailoverprivateownershipinthelongerterm.
Finally,therearestillexpectedtobeasignificant
numberofnewvehicleswithL0andL1technologiesby2035.Thefeaturesofthesetechnologiesare
alsobecomingincreasinglycommoditized,withmanycountriesmandatingbasicsafetyfeatures,
1
AutonomousVehicles:TimelineandRoadmapAhead7
breakthroughsinAI(seeBox2),sensorsand
computingpower,offersthestrongestpotential
foracceleratingtherolloutofAVs.Yetevenifthistechnologyleapwasfullyrealized,L4technologieswouldstillonlybepresentinamodest7.5%of
newcarsalesby2035.Intermsofthelimitsto
uptake,theriskofunfavourableregulationislikelytobethebiggestbarrier.Suchregulationscouldbeenactedifmajor,negativeincidentsinvolvingL4technologiesoccurred,therebyunderliningtheimportanceofindustrycollaborationtoensurethesafetyofthesetechnologies.
suchaslane-keepingassistanceandautomatic
emergencybraking.L1systems,however,struggletodeliveracompellingvalueproposition:theyareasimilarcosttoL2systemsbutoffersignificantlylessfunctionality.Assuch,muchoftheL0marketshareisprojectedtoshiftdirectlytoL2overtime,bypassingL1systemsaltogether.
SupplementingthedatarepresentedinFigure2,
Figure3summarizesthesensitivityanalysiscarriedoutacrossthefivekeydimensionsunderlyingtheforecast.Technologicalprogress,drivenbypossible
Data,togetherwithbreakthroughsinE2EAIandscalablesoftware,areintegralfactorstofast-trackvehicleautonomyandenableglobaldeployment.
BerndSchmaul,ChiefDigitalOfficer,BoschMobility
FIGURE2PassengercarADAS/ADforecast
Globalnewcarsalesbyvehicleautonomylevel
<1%
13%
21%
39%
42%
13%
38%
12%
10%
44%
33%
24%
2023202520302035
L4HighwayandUrban
Note:Someofthetotalsdonotsumto100%duetorounding.
<1%
1%
1%
5%
1%
3%
4%
33%
13%
53%
L0
.L3
L1L2
●Robotaxis
L2+
L4Highway
FIGURE3Sensitivityanalysisofthepassengercarforecast
SupplyDemand
AutonomousVehicles:TimelineandRoadmapAhead8
PercentagepointchangeofL4
newcarsalesby2035fromthe
Dimension
Easy-to-usedeploymentswithpositivemediacoverageincreasedemandHigh-pro?leaccidentsnegativelyimpactpublictrust
Intensecompetition(incl.pricewars)drivesavailabilityofcost-ef?cientsolutionsPricesremainhighduetocomponentshortagesandnon-scalablesolutions
Technologicalbreakthroughsenableearlier,morescalableL4deploymentsKeyODDsremainunresolved,andscalabilitycontinuestobelimited
GovernmentssupportAVsfortechnologicalleadership,safetyandef?ciencyRegulatorslimitdeploymentduetomajorincidents
AVsolutionsscalegloballyacrossautomakers,standardizingtechPoorcoordinationandweakbusinesscaseshinderprogress
-1.0
+0.5
+3.5
-3.0
+1.5
-3.5
Consumertrustandinterest
Pricingand
willingnesstopay
Technologicalmaturity
Regulatory
developments
Ecosystemreadiness
Majorfactorsthatcouldin?uenceL4carsalesby2035
basescenarioof4%(seeFigure2)
+2.0
+1.0
-2.0
-2.0
BOX2
WhatdoadvancesinAImeanforvehicleautomation?
AIandgenerativeAI(GenAI)arebecomingintegraltovehicleautomationtechnology.Theyare
transformingdecision-making,modeltrainingandhuman-machinecollaboration,particularlyacrossthreekeyareas:3
1.End-to-end(E2E)AImodelsarereplacing
traditionalrule-basedsystemsthatstruggle
tohandlereal-worlddrivingcomplexity.
Bycombiningperception,predictionand
planningintoasingleneuralnetwork,E2EAIenablesfasterlearningandbetterresponsesacrossavarietyofenvironments.While
historicallycriticizedforalackoftransparency,recentinnovationismakingtheseE2EAI
modelsmoreinterpretableandverifiable,resolvingsafetyconcernsandincreasingindustryadoption.
2.Bycreatingsyntheticdata,GenAIplaysakeyroleintrainingautonomoussystems.Real-worlddatacollectioniscostlyand
inexhaustive,whereassimulationsusing
GenAIcreatemorediverse,scalabledatasetsthatcanexposemodelstounusualdriving
scenarios.Thisallowsautonomoussystems
tolearnfrommillionsofsimulatedmiles,
improvingtheirabilitytohandleedgecases,
suchassuddenobstaclesorextremeweather.
However,real-worldvalidationremains
essentialtoensurerobustnessandsafety.
3.AIisstrengtheninghuman-machine
collaborationthroughenhanceddriver
monitoringsystems(DMS)andhuman-
machineinterfaces(HMI).DMSuseAItotrackdriverattention,fatigueandstress,triggeringalertsorinterveningtopreventaccidents.
GenAIhelpsimprovevehicleinterfaces,
enablingmoreintuitivevoicecommandsandadaptivecontrolsthatminimizedistractions.
Moreover,byleveragingGenAI,systems
becomemorecapableofexplainingtheir
decisions,improvingtheuser’sunderstanding.
Regionaladoptiondifferences
AsFigure4demonstrates,personalvehicle
automationwillbeadoptedatdifferentratesaroundtheworld.TheshiftisexpectedtobeledbyChinafollowedbytheUnitedStates,withEuropeand
Japanlikelytofollowasimilaryetslowertrajectoryoverthecomingdecade.IntermsofL2+adoption,theshareofnewcarsalesin2035isexpected
tobesignificantlygreaterinChinathananyothermajorterritory.Thisiscaused,inpart,bythe
willingnessofChinesecustomerstoembrace
automationanddomesticOEMsandsuppliers’rapidadvancesinautomation.Chinaisalso
expectedtohaveslightlyhighersharesofL3andL4vehiclesthanothergeographiesin2035–the
USandEuropebeingtheonlyothertwomarketswherethesetechnologieswillstarttoappearinprivatelyownedpassengercarsby2035.
Beyondthesefourkeymarkets,therestof
theworldfollowsamixedtrajectory,withsome
regionssteadilyadoptingL2andL2+systems
whileothersfaceeconomic,technologicaland
regulatoryhurdlesthatwillslowthetransitionto
higherADAS/ADlevels.Figure4alsohighlights
theexampleofIndia,whichfollowsasomewhat
differenttrajectorytotheotherhighlightedmarkets.
InIndia,L0systemsareforecastedtostilldominatein2035duetolowerpurchasingpowerandmorecomplexroadenvironments.IndiaisalsoexpectedtoleapfrogL1andmovemoredirectlytoL2as
thistechnologymatures.
Autonomousdrivingtransformscarsintolivingspaces.ADAS/ADsystemsmustbeaccessibleacrossallregionsandsegments,enhancingsafetyanduser-centricin-vehicleexperiencesforeveryone.
GürcanKarakas,CEO,TOGG
AutonomousVehicles:TimelineandRoadmapAhead9
FIGURE4PassengercarADAS/ADforecastbyregion
Newcarsalesbyvehicleautonomylevel
China
Europe
1%
1%
6%
8%
8%
9%
23%
10%
39%
25%
46%
41%
39%
53%
7%
37%
27%
6%
11%
0%
1%
7%
19%
23%
22%
10%
18%
24%
32%
49%
49%
53%
45%
15%
28%
UnitedStates
2%
6%
13%
4%
46%
48%
45%
5%
21%
17%
17%
17%
40%
35%
29%
24%
14%
14%
202320252030203520232025203020352023202520302035
India
Japan
2%
5%
8%
50%
15%
29%
12%
59%
1%
1%
11%
45%
11%
14%
51%
15%
35%
43%
41%
50%
12%
13%
12%
13%
44%
41%
36%
32%
52%
28%
19%
RestofWorld
5%
6%
1%
13% 3%
23%
4%
95%
93%
84%
73%
2023202520302035202320252030203520232025
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司銀行本票管理制度
- 售票崗位風(fēng)險(xiǎn)管理制度
- 別墅現(xiàn)場(chǎng)裝修管理制度
- 開發(fā)與測(cè)試的協(xié)同工作模式探討試題及答案
- 醫(yī)院推行電腦管理制度
- 廠區(qū)裝修現(xiàn)場(chǎng)管理制度
- 學(xué)校教室規(guī)章管理制度
- 醫(yī)院職工假期管理制度
- 公司禮品贈(zèng)送管理制度
- 沖床加工車間管理制度
- 腎移植術(shù)后的護(hù)理查房
- 貴州貴州鐵路投資集團(tuán)有限責(zé)任公司招聘筆試真題2024
- 繼電器認(rèn)知與應(yīng)用課件
- 中國(guó)重汽集團(tuán)國(guó)際有限公司招聘筆試題庫(kù)2025
- 2025中考英語(yǔ)第11講 任務(wù)型閱讀之閱讀填表(練習(xí))(解析版)
- 產(chǎn)品折價(jià)退貨協(xié)議書
- 2025年新高考?xì)v史模擬預(yù)測(cè)試卷廣西卷(含答案解析)
- 2024-2025學(xué)年甘肅省定西市臨洮縣重點(diǎn)名校初三4月(二診)調(diào)研測(cè)試卷(康德版)化學(xué)試題含解析
- 2025年上半年廣東省東莞市事業(yè)單位招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 小學(xué)生防汛安全主題班會(huì)
- 第二單元 水循環(huán)-2023-2024學(xué)年度五年級(jí)科學(xué)上冊(cè)期中專項(xiàng)復(fù)習(xí)(青島版)
評(píng)論
0/150
提交評(píng)論