




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
小學(xué)五年級下冊數(shù)學(xué)奧數(shù)知識點講解第2課《不規(guī)則圖形面積計算2》試題附答案
例1如右圖,在一個正方形內(nèi),以正方形的三條邊為直徑向內(nèi)作三個半圓.求
陰影部分的面積。
例2如右圖,正方形ABCD的邊長為4厘米,分別以B、D為圓心以4厘米為半徑在
正方形內(nèi)畫圓,求陰影部分面積。
例3如右圖,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半徑AE=6厘米,
扇形CBF的半CB二4厘米,求陰影部分的面積。
例4如右圖,直角三角形ABC中,AB是圓的直徑,且AB=20厘米,如果陰影
(I)的面積比陰影(II)的面積大7平方厘米,求BC長。
例5如右圖,兩個正方形邊長分別是10厘米和6厘米,求陰影部分的面積。
例6如右圖,將直徑Ab為3的半圓繞超時針旋轉(zhuǎn)60°,此時Ab到達(dá)AC的位置,
求陰影部分的面積(取產(chǎn)3).
例7如右圖,ABCD是正方形,且FA二AD二DE二1,求陰影部分的面積.
例8如下頁右上圖,ABC是等腰直角三角形,D是半圓周上的中點,BC是半圓的
直徑,且AB二BOIO,求陰影部分面積(燃3.14)。
答案
第二講不規(guī)則圖形面積的計算(二)
不規(guī)則圖形的另外一種情況,就是由圓、扇形、弓形與三角形、正方形、
長方形等規(guī)則圖形組合而成的,這是一類更為復(fù)雜的不規(guī)則圖形,為了計算它
的面積,常常要變動圖形的位置或?qū)D形進行適當(dāng)?shù)姆指?、拼補、旋轉(zhuǎn)等手段
使之轉(zhuǎn)化為規(guī)則圖形的和、差關(guān)系,同時還常要和“容斥原理”(即:集合A
與集合B之間有:SAIjB=SA+S.c-SArE)合并使用才能解決。
例1如右圖,在一個正方形內(nèi),以正方形的三條邊為直徑向內(nèi)作三個半圓.求
陰影部分的面積。
解法1:把上圖靠下邊的半圓換成(面積與它相等)右邊的半圓,得到右
圖.這時,右圖中陰影部分與不含陰影部分的大小形狀完全一樣,因此它們的
面積相等.所以上圖口陰影部分的面積等于正方形面積的?半。
解法2:將上半個“弧邊三角形”從中間切開,分別補貼在下半圓的上側(cè)
邊上,如右圖所示.陰影部分的面積是正方形面積的一半。解法3:將下面的半
圓從中間切開,分別貼補在上面弧邊三角形的兩側(cè),如右圖所示.陰影部分的
面積是正方形的一絲.
例2如右圖,正方形ABCD的邊長為4厘米,分別以B、D為圓心以4厘米為半徑在
正方形內(nèi)畫圓,求陰影部分面積。
解:由容斥原理
S否備=S置當(dāng)ACs+S重衫AUJ-S三萬衫皿
=-XAB2X2-AB2
4
20
解:BC的長=[3,14X(―)+2-7]X2+20
=(157-7)X2+20
=15(厘米)。
例5如右圖,兩個正方形邊長分別是10厘米和6厘米,求陰影部分的面積。
D
10J6c
分析陰影部分的面積,等于底為16、高為6的直角三角形面積與圖
中(I)的面積之差.而圖中。)的面積等于邊長為6的正方形面積減去"
的以6為半徑的圓的面積。
解:,勇彰一5三空號&6一(,三萬千3;一$鼻弓腦)
11(/1
=-X10+6)X6-(6X6--XHX62
2\1)
=48-9(取兀=3)=39(平方厘米)。
例6如右圖,將直徑窗為3的半圓繞健時針旋轉(zhuǎn)6CT,此時AB到達(dá)AC的位置,
求陰影部分的面積(取產(chǎn)3).
解:整個陰影部分被線段CD分為I和II兩部分,以AB為直徑的半圓被弦AD
分成兩部分,設(shè)其中疝右側(cè)的部分面積為S,由于弓形AD是兩個半圓的公共部
分,去掉AD弓形后,兩個半圓的剩余部分面積相等.即H二S,由于:
I+S=60°圓心角扇形ABC面積
Q
???陰影部分面積是9
例7如右圖,ABCD是止方形,且FA二ADRE,,求陰影部分的面枳.
解:陰影M的面積+陰影N的面積=ABCD的面積=〈,
乙
陰影W的面積=(正方形面積-Jx圓面積)xl
I乙
=-X(lxi-lxirxi2)
24
=yx-=p(取兀=3)°
乙T0
???陰影部分的總面積=4+:=£
OO
例8如下頁右上圖,ABC是等腰直角三角形,D是半圓周上的中點,BC是半圓的
直徑,且AB二BC二10,求陰影部分面積(速3.1。o
解:...三角形ABC是等腰直角三角形,以AC為對角線再作一個全等的等腰
直角三角形ACE,則ABCE為正方形(利用對稱性質(zhì))。
B
?匹茨=三啜
,S(ST3AM+2
=(10Xi0+nx52^-2-1xioxi5)+2
=(100+39.25-75)+2
=64.25+2
=32.125.
總結(jié):對于不規(guī)則圖形面積的討算問題一般將它轉(zhuǎn)化為若干基本規(guī)則圖形
的組合,分析整體與部分的和、差關(guān)系,問題便得到解決.常用的基本方法
有:
一、相加法:這種方法是將不規(guī)則圖形分解轉(zhuǎn)化成幾個基本規(guī)則圖形,分
別計算它們的面積,然后相加求出整個圖形的面積.例如,右圖中,要求整個
圖形的面積,只要先求出上面半圓的面積,再求出下面正方形的面積,然后把
它們相加就可以了.
二、相減法:這種方法是將所求的不規(guī)則圖形的面積看成是若干個基本規(guī)
則圖形的面積之差.例如,右圖,若求陰影部分的面積,只需先求出正方形面
積再減去里面圓的面織即可.
三、直接求法:這種方法是根據(jù)己知條件,從整體出發(fā)直接求出不規(guī)則圖
形面積.如下頁右上圖,欲求陰影部分的面積,通過分
析發(fā)現(xiàn)它就是一個底是2、高是4的三角形,其面積直接可求為:Jx2X4=4
四、重新組合法:這種方法是將不規(guī)則圖形拆開,根據(jù)具體情況和計算上
的需要,重新組合成一個新的圖形,設(shè)法求出這個新圖形面積即可.例如,欲
求右圖中陰影部分面積,可以把它拆開使陰影部分分布在正方形的4個角處,
這時采用相減法就可求出其面積了.
五、輔助線法:這種方法是根據(jù)具體情況在圖形中添一條或若干條輔助
線,使不規(guī)則圖形轉(zhuǎn)化成若干個基本規(guī)則圖形,然后再采用相加、相減法解決
即可.如右圖,求兩個正方形中陰影部分的面積.此題雖然可以用相減法解決,
但不如添加一條輔助線后用直接法作更簡便.
六、割補法:這種方法是把原圖形的一部分切割下來補在圖形中的另一部
分使之成為基本規(guī)則圖形,從而使問題得到解決.例如,如右圖,欲求陰影部
分的面積,只需把右邊弓形切割下來補在左邊,這樣整個陰影部分面積恰是正
方形面積的一半.
七、平移法:這種方法是將圖形中某一部分切割下來平行移動到一恰當(dāng)位
置,使之組合成一個新的基本規(guī)則圖
形,便于求出面積.例如,如上頁最后一圖,欲求陰影部分面積,可先沿
中間切開把左邊正方形內(nèi)的陰影部分平行移到右邊正方形內(nèi),這樣整個陰影部
分恰是一個正方形。
八、旋轉(zhuǎn)法:這種方法是將圖形中某一部分切割下來之后,使之沿某一點
或某一軸旋轉(zhuǎn)一定角度貼補在另一圖形的一側(cè),從而組合成一個新的基本規(guī)則
的圖形,便于求出面積.例如,欲求上圖(1)中陰影部分的面積,可將左半圖
形繞B點逆時針方向旋轉(zhuǎn)180。,使A與C重合,從而構(gòu)成如右圖(2)的樣子,
此時陰影部分的面積可以看成半圓面積減去中間等腰直角三角形的面積.
九、對稱添補法:這種方法是作出原圖形的對稱圖形,從而得到一個新的
基本規(guī)則圖形.原來圖形面積就是這個新圖形面積的一半.例如,欲求右圖中陰
影部分的面積,沿AB在原圖下方作關(guān)于AB為對稱軸的對稱扇形ABD.弓形CBD的
面積的一半就是所求陰影部分的面積。
十、重疊法:這種方法是將所求的圖形看成是兩個或兩個以上圖形的重疊
部分,然后運用“容斥原理”(SAUB=SA+SB-SAHB)解決。例如,欲求右
圖中陰影部分的面積,可先求兩個扇形面積的和,減去正方形面積,因為陰影
部分的面積恰好是兩個扇形重疊的部分.
習(xí)題二
一、填空題(根據(jù)圖口所給的數(shù)據(jù)求陰影部分面積)
二、解答題:
1.如右圖,大圓為直徑為4厘米,求陰影部分的面積。
2.如右圖,大扇形半徑是6厘米,小扇形半徑是3厘米.求陰影部分的面
積。
6
3.如左圖,三個司心圓的半徑分別是2、6、10,求B中陰影部分占大圓面
積的百分之幾?
4.如右圖,正方形ABCD邊長為1厘米,依次以A、B、C、D為圓心,以AD、
BE、CF,DG為半徑畫出扇形,求陰影部分的面積.
E
G
5.如下圖(a),求陰影部分的面積。
6.如下圖(b),把0A分成6個等分,以0為圓心畫出六個扇形,己知最小
的扇形面積是10平方厘米,求陰影部分的面積。
0))
7.如下圖(a),/XABC是等腰直角三角形,直角邊AB二2厘米,BE、BD分別
為以C、A為圓心,BC、AB為半徑所作的弧,求陰影部分面積.
8.如下圖(b),己知半徑OA二OB二009二厘米,N1二N2二15°,求陰影部分
的面積.
五年級奧數(shù)下冊:第二講不規(guī)則圖形面積的計算(二)習(xí)題解答
習(xí)題二解答
一、填空題:
1.陰影部分等于正方形面積的一半,即4.5(平方單位)。
2.陰影部分等于三角形面積的一半,即25(平方單位)。
3.陰影部分等于一個小正方形的面積,即1(平方單位)。
4陰影部分等于9圓的面積減去三角形面積,即冗-2(平方單位)。
5.陰影部分等于長是b、寬是a的矩形面積,即ab(平方單位)。
6陰影部分等于半徑為2的圓面積的;減去直角邊是2的等腰直角三角
形的面積,即Jx兀X2-2X2+2=兀-2(平方單位)。
4
1
7陰影部分面積等于半圓面積減去等腰直角三角形的面積,即〈冗
2-
(平方單位)。
&陰影部分面積等于正方形面積減去圓面積,即100-25兀(平方單位)。
9.陰影部分面積等于大半圓面積減去中和個兩個半圓面積,即18兀-
餐客一95冗(平方單位)。
乙乙
10.陰影部分面積等于大半圓面積減去小半圓面積再減去一個直角三角
形面積,即Jx16兀?(2兀+4X4+2)=6兀-8(平方單位).
11.陰影部分面積等于兩個半圓面積之和減去等腰直角三角形面積,即兀
X32-1X6X6=9%-18(平方單位)。
乙
12.陰影部分面積等于半圓面積,即Jx冗xF=]冗(平方單位)。
乙乙
13.陰影部分面積等于4個半圓面積減去正方形面積,即4xJx冗X5?-
10X10=50^-100(平方單位)。
14.陰影部分面積等于2個圓面積加上一個正方形面積,即2X;rXg+8A32;r
+64(平方單位)。
15二個大圓面積減去半個小圓面積,即怖(平方單位)。
I乙
16.陰影部分面積等于9個圓面積與以6為直角邊的等腰直角三角形面
積差的一半,Bp|x(lx^x62
(平方單位)。
17.陰影部分面積等于小半圓面積加中半圓面積減大半圓面積再加直角
三角形面積,即Jx客+1x^x|zl+;X3X4=;X3X4=6
乙\乙/乙\乙/乙\乙/乙乙
(平方單位)。
18.陰影部分面積等于《個以2為半徑圓的面積加!個以3為半徑圓的面
積減長方形面積,即竽-6(平方單位)。
19.將左邊陰影部分割補到右邊,所以陰影部分就是這個平行四邊形面
積,即2(平方單位).
20.扇形面積減去半個圓面積再減去三角形面積等于圓外陰影部分面積,
半圓面積減去三角形面積等于圓內(nèi)陰影部分面積.上述兩個結(jié)果的和是絲w
(平
方單位),即為所求陽影部分的面積.或者用圓內(nèi)兩個弓形從下半圓割下,補
貼于圓內(nèi)上半圓兩側(cè).陰影面積等于:大圓面積減去對角線長為5的正方形
4
E12fl5525
面枳=~7X7cX5-4x-x—x—小…(平方單位)。
4{222,
2】.兀(平方單位).陰影面積是以2為半徑圓面積的9。
22.4(平方單位).陰影面積是以2為邊長的正方形面積。
二、解答題:
1.先求大圓面積:即314X(g=12,56,再求4個小圓面積,即:3.14X
(4+2+2)詠4=12.56.再求4個小圓重疊部分的面積,即:;x314x(4+2+2產(chǎn)
-(4+2+2)隈;X8=2.28最后大圓面積減去4個小圓面積與4個小重疊部分
面積差,即12.56-(12.56-2.28)=2.28平方厘米,即為所求陰影部分面
積。
2.如右圖,把陰影部分下端的一塊割下,補在上面的空白部分,這樣陰
影部分面積等于半徑為6厘米的圓面積的!減去半徑為3厘米圓面積的;所
得的差,即:
^-x3.14x62-^-x3.14x32=21,195(平方厘米)。
3.33%。
4.7.5坪方厘米。
5.如右圖,陰影部分面積=矩形面積-(S1+S2).把S向左平移2個單位,
則與S拼成一個邊長為4的正方形.
,陰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力系統(tǒng)運行與自動化控制知識試題
- 2025年物業(yè)管理考試題及答案清單
- 2025年護理執(zhí)業(yè)副本綜合考試試題及答案
- 廣東進廠面試題及答案
- java行業(yè)面試題及答案
- 和諧勞動面試題及答案
- 軟件設(shè)計師考試方法論及試題答案
- 社會服務(wù)政策的實施效果試題及答案
- 網(wǎng)絡(luò)工程師職場適應(yīng)能力的提升試題及答案
- 西方國家權(quán)力平衡考量試題及答案
- 鄉(xiāng)鎮(zhèn)養(yǎng)老院建設(shè)年度工作規(guī)劃
- 公司外聘法人協(xié)議書
- 2025舊設(shè)備購買合同范本
- 土地入股公墓協(xié)議書
- 2025年4月自考00041基礎(chǔ)會計學(xué)試題及答案含評分標(biāo)準(zhǔn)
- 施工現(xiàn)場安全隱患常見問題試題及答案
- 2025山西中考:生物高頻考點
- 2025山東濟南先行投資集團有限責(zé)任公司及權(quán)屬公司社會招聘169人筆試參考題庫附帶答案詳解
- 2018年高考地理試卷(浙江)(11月)(解析卷)
- 《ISO 37001-2025 反賄賂管理體系要求及使用指南》專業(yè)解讀和應(yīng)用培訓(xùn)指導(dǎo)材料之5:7支持(雷澤佳編制-2025A0)
- 中國傳統(tǒng)藝術(shù)-篆刻、書法、水墨畫體驗與欣賞(黑龍江聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱工業(yè)大學(xué)
評論
0/150
提交評論