




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGEPAGE1板塊命題點(diǎn)專練(十)立體幾何命題點(diǎn)一空間幾何體的三視圖及表面積與體積1.(2024·浙江高考)某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積(單位:cm3)是()A.2 B.4C.6 D.8解析:選C由幾何體的三視圖可知,該幾何體是一個(gè)底面為直角梯形,高為2的直四棱柱,直角梯形的兩底邊長(zhǎng)分別為1,2,高為2,∴該幾何體的體積為V=eq\f(1,2)×(2+1)×2×2=6.2.(2024·全國(guó)卷Ⅰ)某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示.圓柱表面上的點(diǎn)M在正視圖上的對(duì)應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在左視圖上的對(duì)應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長(zhǎng)度為()A.2eq\r(17) B.2eq\r(5)C.3 D.2解析:選B先畫出圓柱的直觀圖,依據(jù)題圖的三視圖可知點(diǎn)M,N的位置如圖①所示.圓柱的側(cè)面綻開圖及M,N的位置(N為OP的四等分點(diǎn))如圖②所示,連接MN,則圖中MN即為M到N的最短路徑.∵ON=eq\f(1,4)×16=4,OM=2,∴MN=eq\r(OM\a\vs4\al(2)+ON2)=eq\r(22+42)=2eq\r(5).3.(2024·北京高考)某四棱錐的三視圖如圖所示,在此四棱錐的側(cè)面中,直角三角形的個(gè)數(shù)為()A.1 B.2C.3 D.4解析:選C由三視圖得到空間幾何體的直觀圖如圖所示,則PA⊥平面ABCD,四邊形ABCD為直角梯形,PA=AB=AD=2,BC=1,所以PA⊥AD,PA⊥AB,PA⊥BC.又BC⊥AB,AB∩PA=A,所以BC⊥平面PAB.所以BC⊥PB.在△PCD中,PD=2eq\r(2),PC=3,CD=eq\r(5),所以△PCD為銳角三角形.所以側(cè)面中的直角三角形為△PAB,△PAD,△PBC,共3個(gè).4.(2024·北京高考)某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A.60 B.30C.20 D.10解析:選D如圖,把三棱錐A-BCD放到長(zhǎng)方體中,長(zhǎng)方體的長(zhǎng)、寬、高分別為5,3,4,△BCD為直角三角形,直角邊分別為5和3,三棱錐A-BCD的高為4,故該三棱錐的體積V=eq\f(1,3)×eq\f(1,2)×5×3×4=10.5.(2024·天津高考)已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,除面ABCD外,該正方體其余各面的中心分別為點(diǎn)E,F(xiàn),G,H,M(如圖),則四棱錐M-EFGH的體積為______.解析:連接AD1,CD1,B1A,B1C,AC,因?yàn)镋,H分別為AD1,CD1的中點(diǎn),所以EH∥AC,EH=eq\f(1,2)AC,因?yàn)镕,G分別為B1A,B1C的中點(diǎn),所以FG∥AC,F(xiàn)G=eq\f(1,2)AC,所以EH∥FG,EH=FG,所以四邊形EHGF為平行四邊形,又EG=HF,EH=HG,所以四邊形EHGF為正方形,又點(diǎn)M到平面EHGF的距離為eq\f(1,2),所以四棱錐M-EFGH的體積為eq\f(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2×eq\f(1,2)=eq\f(1,12).答案:eq\f(1,12)6.(2024·全國(guó)卷Ⅱ)已知圓錐的頂點(diǎn)為S,母線SA,SB所成角的余弦值為eq\f(7,8),SA與圓錐底面所成角為45°,若△SAB的面積為5eq\r(15),則該圓錐的側(cè)面積為________.解析:如圖,∵SA與底面成45°角,∴△SAO為等腰直角三角形.設(shè)OA=r,則SO=r,SA=SB=eq\r(2)r.在△SAB中,cos∠ASB=eq\f(7,8),∴sin∠ASB=eq\f(\r(15),8),∴S△SAB=eq\f(1,2)SA·SB·sin∠ASB=eq\f(1,2)×(eq\r(2)r)2×eq\f(\r(15),8)=5eq\r(15),解得r=2eq\r(10),∴SA=eq\r(2)r=4eq\r(5),即母線長(zhǎng)l=4eq\r(5),∴S圓錐側(cè)=πrl=π×2eq\r(10)×4eq\r(5)=40eq\r(2)π.答案:40eq\r(2)π命題點(diǎn)二組合體的“切”“接”問(wèn)題1.(2024·全國(guó)卷Ⅲ)設(shè)A,B,C,D是同一個(gè)半徑為4的球的球面上四點(diǎn),△ABC為等邊三角形且其面積為9eq\r(3),則三棱錐D-ABC體積的最大值為()A.12eq\r(3) B.18eq\r(3)C.24eq\r(3) D.54eq\r(3)解析:選B由等邊△ABC的面積為9eq\r(3),可得eq\f(\r(3),4)AB2=9eq\r(3),所以AB=6,所以等邊△ABC的外接圓的半徑為r=eq\f(\r(3),3)AB=2eq\r(3).設(shè)球的半徑為R,球心到等邊△ABC的外接圓圓心的距離為d,則d=eq\r(R2-r2)=eq\r(16-12)=2.所以三棱錐D-ABC高的最大值為2+4=6,所以三棱錐D-ABC體積的最大值為eq\f(1,3)×9eq\r(3)×6=18eq\r(3).2.(2024·天津高考)已知一個(gè)正方體的全部頂點(diǎn)在一個(gè)球面上,若這個(gè)正方體的表面積為18,則這個(gè)球的體積為________.解析:由正方體的表面積為18,得正方體的棱長(zhǎng)為eq\r(3).設(shè)該正方體外接球的半徑為R,則2R=3,R=eq\f(3,2),所以這個(gè)球的體積為eq\f(4,3)πR3=eq\f(4π,3)×eq\f(27,8)=eq\f(9π,2).答案:eq\f(9π,2)3.(2024·江蘇高考)如圖,在圓柱O1O2內(nèi)有一個(gè)球O,該球與圓柱的上、下底面及母線均相切.記圓柱O1O2的體積為V1,球O的體積為V2,則eq\f(V1,V2)的值是________.解析:設(shè)球O的半徑為R,因?yàn)榍騉與圓柱O1O2的上、下底面及母線均相切,所以圓柱的底面半徑為R、高為2R,所以eq\f(V1,V2)=eq\f(πR2·2R,\f(4,3)πR3)=eq\f(3,2).答案:eq\f(3,2)命題點(diǎn)三直線、平面平行與垂直的判定與性質(zhì)1.(2024·全國(guó)卷Ⅲ)如圖,矩形ABCD所在平面與半圓弧所在平面垂直,M是上異于C,D的點(diǎn).(1)證明:平面AMD⊥平面BMC.(2)在線段AM上是否存在點(diǎn)P,使得MC∥平面PBD?說(shuō)明理由.解:(1)證明:由題設(shè)知,平面CMD⊥平面ABCD,交線為CD.因?yàn)锽C⊥CD,BC?平面ABCD,所以BC⊥平面CMD,又DM?平面CMD,所以BC⊥DM.因?yàn)镸為上異于C,D的點(diǎn),且CD為直徑,所以DM⊥MC.又BC∩MC=C,所以DM⊥平面BMC.因?yàn)镈M?平面AMD,所以平面AMD⊥平面BMC.(2)當(dāng)P為AM的中點(diǎn)時(shí),MC∥平面PBD.證明如下:連接AC交BD于O.因?yàn)樗倪呅蜛BCD為矩形,所以O(shè)為AC的中點(diǎn).連接OP,因?yàn)镻為AM中點(diǎn),所以MC∥OP.又MC?平面PBD,OP?平面PBD,所以MC∥平面PBD.2.(2024·全國(guó)卷Ⅱ)如圖,在三棱錐P-ABC中,AB=BC=2eq\r(2),PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且MC=2MB,求點(diǎn)C到平面POM的距離.解:(1)證明:因?yàn)镻A=PC=AC=4,O為AC的中點(diǎn),所以PO⊥AC,且PO=2eq\r(3).連接OB,因?yàn)锳B=BC=eq\f(\r(2),2)AC,所以△ABC為等腰直角三角形,且OB⊥AC,OB=eq\f(1,2)AC=2.所以PO2+OB2=PB2,所以PO⊥OB.又因?yàn)锳C∩OB=O,所以PO⊥平面ABC.(2)如圖,作CH⊥OM,垂足為H,又由(1)可得PO⊥CH,且PO∩OM=O,所以CH⊥平面POM.故CH的長(zhǎng)為點(diǎn)C到平面POM的距離.由題設(shè)可知OC=eq\f(1,2)AC=2,MC=eq\f(2,3)BC=eq\f(4\r(2),3),∠ACB=45°,所以O(shè)M=eq\f(2\r(5),3),CH=eq\f(OC·MC·sin∠ACB,OM)=eq\f(4\r(5),5).所以點(diǎn)C到平面POM的距離為eq\f(4\r(5),5).3.(2024·北京高考)如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F(xiàn)分別為AD,PB的中點(diǎn).(1)求證:PE⊥BC;(2)求證:平面PAB⊥平面PCD;(3)求證:EF∥平面PCD.證明:(1)因?yàn)镻A=PD,E為AD的中點(diǎn),所以PE⊥AD.因?yàn)榈酌鍭BCD為矩形,所以BC∥AD,所以PE⊥BC.(2)因?yàn)榈酌鍭BCD為矩形,所以AB⊥AD.又因?yàn)槠矫鍼AD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB?平面ABCD,所以AB⊥平面PAD,因?yàn)镻D?平面PAD,所以AB⊥PD.又因?yàn)镻A⊥PD,AB∩PA=A,所以PD⊥平面PAB.因?yàn)镻D?平面PCD,所以平面PAB⊥平面PCD.(3)如圖,取PC的中點(diǎn)G,連接FG,DG.因?yàn)镕,G分別為PB,PC的中點(diǎn),所以FG∥BC,F(xiàn)G=eq\f(1,2)BC.因?yàn)樗倪呅蜛BCD為矩形,且E為AD的中點(diǎn),所以DE∥BC,DE=eq\f(1,2)BC.所以DE∥FG,DE=FG.所以四邊形DEFG為平行四邊形.所以EF∥DG.又因?yàn)镋F?平面PCD,DG?平面PCD,所以EF∥平面PCD.4.(2024·江蘇高考)在平行六面體ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求證:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.證明:(1)在平行六面體ABCD-A1B1C1D1中,AB∥A1B1.因?yàn)锳B?平面A1B1C,A1B1?平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面體ABCD-A1B1C1D1中,四邊形ABB1A1為平行四邊形.又因?yàn)锳A1=AB,所以四邊形ABB1A1為菱形,因此AB1⊥A1B.因?yàn)锳B1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因?yàn)锳1B∩BC=B,A1B?平面A1BC,BC?平面A1BC,所以AB1⊥平面A1BC.因?yàn)锳B1?平面ABB1A1,所以平面ABB1A1⊥平面A1BC.命題點(diǎn)四空間角度問(wèn)題1.(2024·全國(guó)卷Ⅱ)在正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn),則異面直線AE與CD所成角的正切值為()A.eq\f(\r(2),2) B.eq\f(\r(3),2)C.eq\f(\r(5),2) D.eq\f(\r(7),2)解析:選C如圖,連接BE,因?yàn)锳B∥CD,所以異面直線AE與CD所成的角為∠EAB或其補(bǔ)角.在Rt△ABE中,設(shè)AB=2,則BE=eq\r(5),則tan∠EAB=eq\f(BE,AB)=eq\f(\r(5),2),所以異面直線AE與CD所成角的正切值為eq\f(\r(5),2).2.(2024·全國(guó)卷Ⅰ)在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AC1與平面BB1C1C所成的角為30°,則該長(zhǎng)方體的體積為()A.8 B.6eq\r(2)C.8eq\r(2) D.8eq\r(3)解析:選C如圖,連接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B為直線AC1與平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=eq\f(2,sin30°)=4.在Rt△ACC1中,CC1=eq\r(AC\o\al(2,1)-AC2)=eq\r(42-22+22)=2eq\r(2),∴V長(zhǎng)方體=AB·BC·CC1=2×2×2eq\r(2)=8eq\r(2).3.(2024·全國(guó)卷Ⅰ)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為()A.eq\f(3\r(3),4) B.eq\f(2\r(3),3)C.eq\f(3\r(2),4) D.eq\f(\r(3),2)解析:選A如圖所示,在正方體ABCD-A1B1C1D1中,平面AB1D1與棱A1A,A1B1,A1D1所成的角都相等,又正方體的其余棱都分別與A1A,A1B1,A1D1平行,故正方體ABCD-A1B1C1D1的每條棱所在直線與平面AB1D1所成的角都相等.如圖所示,取棱AB,BB1,B1C1,C1D1,D1D,DA的中點(diǎn)E,F(xiàn),G,H,M,N,則正六邊形EFGHMN所在平面與平面AB1D1平行且面積最大,此截面面積為S正六邊形EFGHMN=6×eq\f(1,2)×eq\f(\r(2),2)×eq\f(\r(2),2)×sin60°=eq\f(3\r(3),4).4.(2024·浙江高考)已知四棱錐S-ABCD的底面是正方形,側(cè)棱長(zhǎng)均相等,E是線段AB上的點(diǎn)(不含端點(diǎn)),設(shè)SE與BC所成的角為θ1,SE與平面ABCD所成的角為θ2,二面角S-AB-C的平面角為θ3,則()A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1解析:選D如圖,不妨設(shè)底面正方形的邊長(zhǎng)為2,E為AB上靠近點(diǎn)A的四等分點(diǎn),E′為AB的中點(diǎn),S究竟面的距離SO=1,以EE′,E′O為鄰邊作矩形OO′EE′,則∠SEO′=θ1,∠SEO=θ2,∠SE′O=θ3.由題意,得tanθ1=eq\f(SO′,EO′)=eq\f(\r(5),2),tanθ2=eq\f(SO,EO)=eq\f(1,\f(\r(5),2))=eq\f(2,\r(5)),tanθ3=1,此時(shí)tanθ2<tanθ3<tanθ1,由圖可知θ1,θ2,θ3∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),故θ2<θ3<θ1.當(dāng)E在AB中點(diǎn)處時(shí),θ2=θ3=θ1.故選D.5.(2024·天津高考)如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=2eq\r(3),∠BAD=90°.(1)求證:AD⊥BC;(2)求異面直線BC與MD所成角的余弦值;(3)求直線CD與平面ABD所成角的正弦值.解:(1)證明:因?yàn)槠矫鍭BC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,AD?平面ABD,所以AD⊥平面ABC.因?yàn)锽C?平面ABC,所以AD⊥BC.(2)取棱AC的中點(diǎn)N,連接MN,ND.因?yàn)镸為棱AB的中點(diǎn),所以MN∥BC.所以∠DMN(或其補(bǔ)角)為異面直線BC與MD所成的角.在Rt△DAM中,AD=2eq\r(3),AM=1,所以DM=eq\r(AD2+AM2)=eq\r(13).因?yàn)锳D⊥平面ABC,AC?平面ABC,所以AD⊥AC.在Rt△DAN中,AN=1,所以DN=eq\r(AD2+AN2)=eq\r(13).在等腰三角形DMN中,MN=1,可得cos∠DMN=eq\f(\f(1,2)MN,DM)=eq\f(\r(13),26).所以異面直線BC與MD所成角的余弦值為eq\f(\r(13),26).(3)連接CM.因?yàn)椤鰽BC為等邊三角形,M為邊AB的中點(diǎn),所以CM⊥AB,CM=eq\r(3).因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡(jiǎn)單的轉(zhuǎn)讓合同協(xié)議書
- 委托買煤合同協(xié)議書范本
- 2025茶葉買賣合同范本模板
- 2025環(huán)保工程委托檢測(cè)合同書
- 2025銷售代表薪酬協(xié)議合同模板
- 黑桃生產(chǎn)加工合同協(xié)議書
- 2025年度無(wú)償借款合同
- 補(bǔ)償勞動(dòng)合同協(xié)議書
- 勞務(wù)代理合同協(xié)議書
- 2025物流企業(yè)租賃合同書
- 2025年消控室考核試題及答案
- 衛(wèi)健系統(tǒng)2025年上半年安全生產(chǎn)工作總結(jié)
- 餐廳食材驗(yàn)收培訓(xùn)
- 麻精藥品規(guī)范化管理與使用
- 廬江縣2024-2025學(xué)年四下數(shù)學(xué)期末達(dá)標(biāo)測(cè)試試題含解析
- 水泥廠班組生產(chǎn)中的安全
- 湘教版地理中考總復(fù)習(xí)教案
- 東北石油大學(xué)專用畢業(yè)答辯模板2
- 2025年個(gè)人房貸還款合同格式
- 2025年福建廈門市翔安市政集團(tuán)水務(wù)管理有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2021年上海市高考英語(yǔ)試卷(春考)(解析卷)
評(píng)論
0/150
提交評(píng)論