函數(shù)極值與最值-原卷版-2023屆二輪復(fù)習(xí)《導(dǎo)數(shù)與解析幾何》必掌握問題_第1頁(yè)
函數(shù)極值與最值-原卷版-2023屆二輪復(fù)習(xí)《導(dǎo)數(shù)與解析幾何》必掌握問題_第2頁(yè)
函數(shù)極值與最值-原卷版-2023屆二輪復(fù)習(xí)《導(dǎo)數(shù)與解析幾何》必掌握問題_第3頁(yè)
函數(shù)極值與最值-原卷版-2023屆二輪復(fù)習(xí)《導(dǎo)數(shù)與解析幾何》必掌握問題_第4頁(yè)
函數(shù)極值與最值-原卷版-2023屆二輪復(fù)習(xí)《導(dǎo)數(shù)與解析幾何》必掌握問題_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第2講函數(shù)極值與最值

典型例題

[例1]設(shè)函數(shù)/(尤)=[4尤2一(30+1)無(wú)+34+2]6\若/(%)在*=1處取得極

小值,求實(shí)數(shù)a的取值范圍.2.已知函數(shù)/(x)=e,(加+x+l),若函數(shù)〃力的極

大值大于1,求實(shí)數(shù)。的取值范圍.

【例2】已知函數(shù)/(尤)=寸(辦2+%+1),若函數(shù)〃無(wú))的極大值大于1,求實(shí)

數(shù)a的取值范圍.

[例3]已知函數(shù)/(x)=(2ox2+4x)lnx—ox2-4x(a£R,且。。0),若函數(shù)

f(x)的極小值為,求實(shí)數(shù)。的值.

[例4]已矢口函數(shù)/(%)=%-sinxcosx.

⑴求證:當(dāng)xe0,f時(shí),/(%)..0.

x

⑵設(shè)g(%)=xe0,勺,試判斷函數(shù)g(x)的極值情況.

tanx112JJ

【例5】已知函數(shù)7?(x)=hu,-1.

X

⑴求“X)的單調(diào)區(qū)間.

⑵設(shè)函數(shù)g(x)=常,求證:當(dāng)-1<a<0時(shí),g(%)在(1,+。)上存在極小

值.

【例6】已知函數(shù)/(九)=e"—九之一九.

⑴若g(x)=e*—2x—l,求函數(shù)g(x)的最小值.

⑵判斷函數(shù)〃尤)的極值個(gè)數(shù).

【例7】已知函數(shù)/(力=則-x,設(shè)b>l,求在區(qū)間:力上的最大值

Xu

和最小值.

【例8】已知函數(shù)/(x)=d-以+;,求函數(shù)〃x)在[0,1]上的最大值和最小

值.

【例9]已知函數(shù)人(耳=/1+2)-求函數(shù)從力在區(qū)間[-2,0]上的最大

值和最小值.

【例10]已知函數(shù)〃x)=xsinx+2cosX+X,求導(dǎo)數(shù)/(九)在區(qū)間0,-上的

最大值和最小值.

【例11]已知函數(shù)/(x)=ax2+ax-xcc(a>1),求證:當(dāng)x<0時(shí),函數(shù)/(%)

存在唯一的極小值點(diǎn)/,且-g<x0<0.

【例12]已知函數(shù)〃x)=eX-alnMaeR),當(dāng)a=e時(shí),求函數(shù)“X)的極小

值.

【例13】已知函數(shù)7?(x)=gx3-3必+4國(guó)_1.求證:當(dāng)a<0時(shí),函數(shù)既

有極大值又有極小值.

【例14]已知函數(shù)/(x)=gov3-g(a+l)x2+x+l(a..l),若/(無(wú))在R上無(wú)

極值點(diǎn),求。的值.

3x2

【例15]設(shè)函數(shù)/(x)=jx~~+ax(aeR),/(x)有兩個(gè)極值點(diǎn)xt,x2,試

討論過兩點(diǎn)(%,/&)),(9,/(々))的直線能否過點(diǎn)(U)?若能,求。的值;若不能,

說(shuō)明理由.

【例16]已知函數(shù)/(%)=eX-a(lnr+l)(aeR),若函數(shù)y=/(x)在區(qū)間

上有極值,求實(shí)數(shù)a的取值范圍.

【例17】已知函數(shù)〃x)=(m+l)x+lnx(m£R),若函數(shù)

g(x)=」x2+L-/(X)在區(qū)間(1,2)內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)機(jī)的取值范

2x

圍.

【例18]已知函數(shù)g(x)=;%2+mcosx,當(dāng)機(jī)>1時(shí),求證:g(4)在(0,上存

在最小值.

【例19】對(duì)于函數(shù)〃%),若存在實(shí)數(shù)x。滿足〃尤0)=%,則稱/為函數(shù)〃尤)

的一個(gè)不動(dòng)點(diǎn).已知函數(shù)/(同=大3+々^+陵+3,其中a/eR.若/(%)有兩個(gè)相

異的極值點(diǎn)玉,々,則是否存在。力,使得和々均為/(%)的不動(dòng)點(diǎn)?證明你的結(jié)

論.

【例20】已知函數(shù)〃x)=e,-;x2.設(shè)/為曲線廣〃可在點(diǎn)p(xo"(x。))處

的切線,其中

(1)求直線/的方程(用/表示).

(2)設(shè)。為原點(diǎn),直線%=1分別與直線/和不軸交于A,5兩點(diǎn),求△AOB的面

積的最小值.

【例21]設(shè)函數(shù)=一8%2+20x+c.若/(x)的兩個(gè)極值異號(hào),求證:

/(x)的兩個(gè)較小的零點(diǎn)七,%滿足4<為+巧<§.

【例22]已知函數(shù)/(x)=(x+a)lm:,當(dāng)a>0時(shí),若〃無(wú))有極小值,求實(shí)數(shù)a

的取值范圍.

【例23】已知函數(shù)/(尤)=尤-1+工(aeR),當(dāng)a=1時(shí),若直線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論