2025中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí)專練:三角函數(shù)實(shí)際問題(含答案解析)_第1頁
2025中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí)專練:三角函數(shù)實(shí)際問題(含答案解析)_第2頁
2025中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí)專練:三角函數(shù)實(shí)際問題(含答案解析)_第3頁
2025中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí)專練:三角函數(shù)實(shí)際問題(含答案解析)_第4頁
2025中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí)專練:三角函數(shù)實(shí)際問題(含答案解析)_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重難點(diǎn)05三角函數(shù)實(shí)際問題

明考情.知方向

此題型在2015年和2022年2023年作為解答題進(jìn)行考查,其余8年都作為選擇題進(jìn)行考查,主要考查解直角

三角形與實(shí)際情境相結(jié)合.作為解答題考查是其考查趨勢(shì).該題型結(jié)合實(shí)際情境通過計(jì)算物體的高度或者距

離,考查學(xué)生對(duì)于幾何圖形的實(shí)際應(yīng)用能力.熟練掌握解直角三角形的相關(guān)知識(shí)點(diǎn),靈活運(yùn)用作輔助線的方法。

重難點(diǎn)題型解讀

題型1選擇時(shí)間短的路線

題型2選擇路程少的路線

三角函數(shù)實(shí)際問題

\題型3判斷是否及時(shí)到達(dá)

題型4求實(shí)際距離

【題型1選擇時(shí)間短的路線】

主要考查仰俯角、勾股定理與行程問題,三角函數(shù)的計(jì)算的綜合,掌握仰俯角求路程,勾股定理的運(yùn)用,

三角函數(shù)的計(jì)算方法是解題的關(guān)鍵.除了要比較的大小,還需注意速度對(duì)于時(shí)間的影響。

1.(第八中學(xué)校2024-2025學(xué)年九年級(jí)下學(xué)期開學(xué))2025年重慶"新年第一跑”活動(dòng)在渝北區(qū)中央公園中央廣

場(chǎng)舉辦,活動(dòng)方開辟出了兩條經(jīng)典路線.如圖是兩條跑步路線的平面示意圖,已知終點(diǎn)C在起點(diǎn)A的東北

方向.路線①從起點(diǎn)A出發(fā)向北偏東30。的方向先跑過一段山路到達(dá)補(bǔ)給點(diǎn)8,再沿正東方向跑一段步道即

可到達(dá)終點(diǎn)C;路線②從起點(diǎn)A出發(fā)沿北偏東75。的方向跑過一段山路到達(dá)補(bǔ)給點(diǎn)。,再沿正北方向的步

道跑1800米即可到達(dá)終點(diǎn)C.(參考數(shù)據(jù):0=1.414,V3?1.732,76?2.449)

⑴求AC的長(zhǎng)度;(結(jié)果精確到1米)

⑵某班有兩位同學(xué)小軒和小鵬參加了跑步活動(dòng),小軒選擇路線①,他的平均速度為80米/分鐘,小鵬選擇

了路線②,他的平均速度為90米/分鐘,若兩人同時(shí)出發(fā),請(qǐng)通過計(jì)算說明誰會(huì)先到達(dá)終點(diǎn)?(結(jié)果精確

至U0.1)

2.(南開中學(xué)2024-2025學(xué)年九年級(jí)下學(xué)期開學(xué))除夕當(dāng)天,小南和小津相約同時(shí)從家出發(fā)前往外婆家吃年

夜飯.如圖,小南從家A處出發(fā)步行至小青家B處,再步行到達(dá)正東方向的朝旭百貨C處,最后步行到達(dá)

外婆家。處.小津從家F處出發(fā)步行至商店E處,再步行至外婆家.已知8在A的東北方向,且AB=2000米,

8C=200米,C在E的正北方向,且在。的北偏西60。方向,E既在產(chǎn)的南偏東53。方向,又在。的南偏西

30。方向,且DE=1500米,廠在A的正東方向.(參考數(shù)據(jù):&句.41,6^1,73,sin53°?0.8,cos53°?0.6)

(1)求小津家尸處與商店E處的距離;(結(jié)果保留根號(hào))

⑵小南步行的平均速度為90米/分,小津步行的平均速度為60米/分,請(qǐng)計(jì)算說明小南和小津誰先到達(dá)外

婆家.(結(jié)果精確到0.1)

3.(24-25九年級(jí)上?重慶江北?期末)北濱路延伸段建設(shè)是我區(qū)的重大民生項(xiàng)目,在建設(shè)過程中十分重視便

民利民.如圖,四邊形ABCD區(qū)域是規(guī)劃的休閑公園,其中四周是人行步道,對(duì)角線AC、BO為兩條自行

車道,點(diǎn)8為公園入口.經(jīng)測(cè)量,點(diǎn)A在點(diǎn)2的正東方向,同時(shí)點(diǎn)A在點(diǎn)。的南偏東45。方向,點(diǎn)C在點(diǎn)

D的南偏西60。方向,點(diǎn)C在點(diǎn)A的北偏西75。方向,若AD=900匹米.(參考數(shù)據(jù):72?1.414,021.732,

瓜~2.449)

⑴求自行車道AC的長(zhǎng).(結(jié)果保留小數(shù)點(diǎn)后一位)

⑵測(cè)得“汨=15。,小明從A地以60米/分鐘的速度步行前往8地,小明出發(fā)2分鐘后,小剛以小明步行

速度的3倍騎自行車從。出發(fā)趕往8地給小明送東西,問他們誰先到達(dá)8地,通過計(jì)算說明先到達(dá)多長(zhǎng)時(shí)

間?(結(jié)果保留小數(shù)點(diǎn)后兩位)

4.(第一中學(xué)校2024-2025學(xué)年九年級(jí)下學(xué)期入學(xué)考)寒假期間,小明和小紅在A處游玩,結(jié)束后相約去

學(xué)校自習(xí)室,學(xué)校在點(diǎn)C處,小明家在點(diǎn)。處,小紅家在點(diǎn)8處,點(diǎn)。在點(diǎn)A的正東方向,點(diǎn)B在點(diǎn)A的

正北方向,點(diǎn)C在點(diǎn)8的北偏東60。方向,點(diǎn)C在點(diǎn)。的東北方向,且AB=200米,BC=8007|e.

(1)求小明家到學(xué)校的距離8的長(zhǎng)度(結(jié)果保留根號(hào));

(2)小明和小紅同時(shí)從A處出發(fā),兩人先各自回家取書包,再去學(xué)校自習(xí)室,小明步行的速度為40米/分,

小紅步行的速度為45米/分,請(qǐng)通過計(jì)算說明誰先到達(dá)學(xué)校自習(xí)室(兩人取書包的時(shí)間忽略不計(jì)).(參考數(shù)

據(jù):抽=1.414,1.732,結(jié)果精確到十分位)

5.(榮昌初級(jí)中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期期中)五邊形M3是圍繞河CE修建的步道,小依和爸爸

從A前往。處,有兩條線路,如圖:①A-E-O;②A-3-C-O.經(jīng)勘測(cè),點(diǎn)2在點(diǎn)A的正南方向,AB=150

米,點(diǎn)C在點(diǎn)8的正東方向,30=300米,點(diǎn)。在點(diǎn)C的北偏東60。,點(diǎn)E在點(diǎn)A的東北方向,點(diǎn)E在點(diǎn)

C的正北方向,點(diǎn)。在點(diǎn)E的正東方向.(參考數(shù)據(jù):V2?1.414,6R.732)

E

D

j45Z北

a西4*東

BC南

(1)求AE的長(zhǎng)度(結(jié)果精確到1米);

(2)小依選擇線路①,爸爸選擇線路②,小依步行速度是80米/分鐘,爸爸步行速度是100米/分鐘,小依

和爸爸同時(shí)從A處出發(fā)且始終保持勻速前進(jìn),請(qǐng)計(jì)算說明小依和爸爸誰先到達(dá)。處?

【題型2選擇路程少的路線】

此類題考查了解直角三角形的實(shí)際應(yīng)用,明確題意,準(zhǔn)確構(gòu)造直角三角形是解題的關(guān)鍵。還需注意了解

直角三角形的應(yīng)用、矩形的判定及性質(zhì)、等腰三角形的判定及性質(zhì)。

6.(24-25九年級(jí)上?重慶渝北?期末)如圖,一艘貨船從A港口出發(fā),需要運(yùn)至其正北方向260海里處的港

口8,由于航道條件限制,貨船有兩種可能的航行路線:①由港口A出發(fā),經(jīng)港口C,。休整,最后駛向

港口②由港口A出發(fā),經(jīng)港口E休整,最后駛向港口B(休整時(shí)間忽略不計(jì)).經(jīng)勘測(cè),港口C在港口

A東北方向,港口。在港口C正北方向80海里處,港口。在港口B東南方向,港口E在港口B南偏西60。方

向,港口E在港口A北偏西30。方向.(V2?1.41,^?1.73)

(1)求港口A和港口E之間的距離.(結(jié)果保留根號(hào))

⑵考慮到航行時(shí)間和成本,貨船需要選擇路程更短的路線,請(qǐng)通過計(jì)算說明是選擇路線①還是路線②.(結(jié)

果精確到個(gè)位)

7.(24-25九年級(jí)上?重慶沙坪壩?期末)某校開展了"尋根?行走的青春”研學(xué)活動(dòng).如圖所示,國(guó)防教育8在

勞動(dòng)教育A正北方向,AB=200米;科學(xué)研究C在國(guó)防教育2北偏東30。方向,3C=260米;素質(zhì)拓展。

在科學(xué)研究C東南方向;德育實(shí)踐E在素質(zhì)拓展D正南方向,且在勞動(dòng)教育A正東方向,AE=300米.(參

考數(shù)據(jù):72?1.4,8R.7)

(1)求C,。兩處之間的距離(結(jié)果精確到個(gè)位);

(2)小沙和小坪從勞動(dòng)教育A處出發(fā),準(zhǔn)備一起前往素質(zhì)拓展。處,有兩條路可選擇:①Af

②ArErD,請(qǐng)通過計(jì)算說明選擇哪一條路較近.

8.(24-25九年級(jí)上?重慶南岸?期末)如圖,A,8兩地的直線距離為7km,但因湖水相隔,不能直接到達(dá).從

A到B有兩條路可走.線路1:仄A-C-B;線路2:從A-D-B.從地圖上可得到以下數(shù)據(jù):點(diǎn)C位于A

的正北方向,且在8的北偏西63。的方向;點(diǎn)。在A的東南方向,且位于8的南偏西37。方向.(參考數(shù)據(jù):

0al.4,A/5?2.24,sin63°?0.89,cos63°?0.45,tan63°?2,sin37°?0.60,cos37°?0.80,tan37°?0.75.)

D

(1)求AD的長(zhǎng)度;(保留1位小數(shù))

⑵通過計(jì)算說明,線路1和線路2,那條線路更短.

9.(鳳鳴山中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期第三次月考)如圖,A,B,C,。分別是某公園四個(gè)景點(diǎn),

B在A的正東方向,。在A的正北方向,且在C的北偏西60。方向,C在A的北偏東30。方向,且在B的北

偏西15。方向,AB=2千米.(參考數(shù)據(jù):0=1.41,石。1.73,46~2.45)

(1)求BC的長(zhǎng)度(結(jié)果精確到0.1千米);

(2)甲、乙兩人從景點(diǎn)。出發(fā)去景點(diǎn)3,甲選擇的路線為:D-C-B,乙選擇的路線為:D-A-B.請(qǐng)計(jì)算

說明誰選擇的路線較近?

10.(南開中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期12月)如圖,A、B、C、。分別是鐵山坪森林公園的四個(gè)景點(diǎn)

且位于同一平面內(nèi),B在A的正東方向,C在2的正北方向,。在A的北偏東30。方向且在C的北偏西45。方

向,OC=4近千米,3C=6千米.(參考數(shù)據(jù):拒xl.41,73?1.73)

(1)求的長(zhǎng)度;(結(jié)果保留很號(hào))

(2)甲、乙兩人從景點(diǎn)A出發(fā)去景點(diǎn)C,甲選擇的路線為A-O-C,乙選擇的路線為A-B-C.請(qǐng)計(jì)算說明

誰選擇的路線較近?(結(jié)果精確到01千米)

【題型3判斷是否及時(shí)到達(dá)】

000?

此類題考查了解直角三角形的應(yīng)用-方位角問題,根據(jù)題目的已知條件并結(jié)合圖形添加適當(dāng)?shù)妮o助線是解

題的關(guān)鍵.還需了解平行線分線段成比例,相似三角形的應(yīng)用,熟練掌握平行線分線段成比例定理以及

相似三角形的判定和性質(zhì)是解題的關(guān)鍵.

11.(巴蜀中學(xué)校2023-2024學(xué)年九年級(jí)下學(xué)期期中)去年,第9號(hào)臺(tái)風(fēng)"蘇拉"登陸我國(guó)沿海地區(qū),風(fēng)力強(qiáng)、

影響范圍廣,有極強(qiáng)的破壞力.如圖,臺(tái)風(fēng)中心從A地由南向北移動(dòng),1小時(shí)后到達(dá)B地.已知點(diǎn)C為一

海港,在C港測(cè)得:A地在C地南偏東37。方向、距離為300千米處;2地在C地東南方向上.(參考數(shù)據(jù):

34I-

sin37°,cos37°?-,72-1.41,V6?2,45)

⑴當(dāng)臺(tái)風(fēng)中心到達(dá)8地時(shí)距海港C還有多遠(yuǎn)?(結(jié)果保留根號(hào))

(2)當(dāng)臺(tái)風(fēng)中心到達(dá)8地后方向立即發(fā)生了改變,沿北偏西15。方向快速移動(dòng),風(fēng)速比之前增強(qiáng)了50%,影響

范圍進(jìn)一步擴(kuò)大,以臺(tái)風(fēng)中心為圓心,周圍150加千米以內(nèi)為受影響區(qū)域,此時(shí)C港接到緊急通知:要求

所有人員在30分鐘內(nèi)撤離海港.請(qǐng)通過計(jì)算說明C港人員能否在受臺(tái)風(fēng)影響前及時(shí)撤離?

12.(2024年重慶大渡口區(qū)九年級(jí)中考一診)某送貨司機(jī)在各站點(diǎn)間上門送貨的平面路線如圖所示:

A-B-C-D.已知點(diǎn)8在點(diǎn)A的北偏東45。方向3.6km處,點(diǎn)C在點(diǎn)8的正東方2.4km處,點(diǎn)。在點(diǎn)C的

南偏東30。方向,點(diǎn)。在點(diǎn)A的正東方.(參考數(shù)據(jù):逝R.414,V3?1.732,?=2.449)

(1)求線段的長(zhǎng)度;(結(jié)果精確到OQlkm)

(2)已知送貨司機(jī)在送貨過程中全程保持Wm/s的速度勻速行駛,若現(xiàn)在有急件需要在16分鐘內(nèi)從A點(diǎn)運(yùn)送

到。點(diǎn),則送貨司機(jī)按既定路線A-3-C-O進(jìn)行運(yùn)送能否按時(shí)送達(dá)?(送貨司機(jī)在各站點(diǎn)停留的時(shí)間忽略

不計(jì))

13.(22-23九年級(jí)上?重慶沙坪壩?期末)如圖,小南家A位于一條東西走向的筆直馬路上,超市B在A地的

正東方.午休時(shí)間,小南從家A出發(fā)沿北偏東60。方向步行600m至菜鳥驛站C取快遞.下午第一節(jié)網(wǎng)課是

美術(shù)課,此時(shí)距離上課時(shí)間只有7min,他決定先沿西南方向步行至超市B購買素描畫紙,再沿正西方向回

⑴求菜鳥驛站C與超市B的距離(保留整數(shù));

(2)若小南的步行速度為80m/min,那么他上美術(shù)網(wǎng)課會(huì)遲到嗎?請(qǐng)說明理由.(忽略買素描畫紙的時(shí)間)

14.(潼南區(qū)九年級(jí)下學(xué)期二模)某校進(jìn)行應(yīng)急演練,事發(fā)地點(diǎn)C處發(fā)生了一起事故,有傷員需要救援.為

了提高營(yíng)救效率,接到報(bào)告后,位于8點(diǎn)處的演練應(yīng)急處理隊(duì)員立即報(bào)告120(專為演練準(zhǔn)備的),并組織

位于B點(diǎn)處的救護(hù)人員立即出發(fā),A處的120救護(hù)車接到通知后也立刻同時(shí)出發(fā)前往事發(fā)地點(diǎn)C處.計(jì)劃

由B處的救護(hù)人員趕到事發(fā)地點(diǎn)C處一邊應(yīng)急處理一邊護(hù)送該傷員沿C4方向行進(jìn),與救護(hù)車相遇后將該傷

員轉(zhuǎn)移到救護(hù)車上接受救治.已知C在A的北偏東30。方向500米上,B在A的東北方向上,且在C的正南

方向上.

(1)求3c兩點(diǎn)的距離(結(jié)果精確到1米,參考數(shù)據(jù):君名1.732);

(2)黃金救援時(shí)間是6分鐘(本次演練設(shè)定為3分鐘),救護(hù)人員的平均速度為90米/分,救護(hù)車的平均速度

為230米/分,請(qǐng)判斷該傷員是否能在黃金救援時(shí)間內(nèi)接受救治?請(qǐng)說明理由.(事發(fā)與接到通知之間的時(shí)間,

接送傷員上下車的時(shí)間均忽略不計(jì))

15.(育才中學(xué)教育集團(tuán)2024-2025學(xué)年九年級(jí)上學(xué)期9月)如圖,四邊形ABCD是休閑公園的人行步道.AC,

8D是兩條自行車道且相交于點(diǎn)。,點(diǎn)B是休閑公園入口.經(jīng)測(cè)量,點(diǎn)A在點(diǎn)。的西偏南45。方向,點(diǎn)C在

點(diǎn)。的東偏南30。方向,點(diǎn)C在點(diǎn)A的北偏東75。方向,AD=400"米.

⑴求自行車道AC的長(zhǎng)度(精確到個(gè)位數(shù));

(2)測(cè)得ZAO5=45。,小剛從A點(diǎn)出發(fā)步行沿步道去B處取快餐,小剛步行的速度為60米每分鐘,送餐

員等待的時(shí)間不超過5分鐘,請(qǐng)計(jì)算說明小剛能否在送餐員規(guī)定的時(shí)間內(nèi)取到快餐嗎?(參考數(shù)據(jù):

應(yīng)它1.414,6a1.732,后a2.449)

【題型4求實(shí)際距離】

此類題考查了平行線分線段成比例,相似三角形的應(yīng)用,熟練掌握平行線分線段成比例定理以及相似三

角形的判定和性質(zhì).通過仰角俯角問題測(cè)量物體高度,熟練掌握銳角三角函數(shù)的定義是解答本題的關(guān)鍵.

16.(高新區(qū)中學(xué)聯(lián)盟2024-2025學(xué)年九年級(jí)上學(xué)期期中)為了方便市民出行,建委決定對(duì)某街道一條斜坡

進(jìn)行改造,計(jì)劃將原斜坡坡角為45。的3c改造為坡角為30。的AC,已知BC=20匹米,點(diǎn)A,B,C,D,

(1)求的距離;(結(jié)果保留根號(hào))

⑵一輛貨車沿斜坡從C處行駛到廠處,貨車的高斯為6米,EF1AC,若B=32米,求此時(shí)貨車頂端E

到水平線C。的距離(精確到0.1米,參考數(shù)據(jù):應(yīng)21.41,#1al.73)

17.(巴蜀中學(xué)校2024-2025學(xué)年九年級(jí)上學(xué)期期末)"1"腔熱血護(hù)家園,"1"呼百應(yīng)齊參與,"9"久守護(hù)永不

變,在“全國(guó)消防日”之際,學(xué)校組織學(xué)生到消防隊(duì)參觀消防救援車實(shí)施救援演練的過程,圖1是高空救援消

防車實(shí)物圖,圖2是其側(cè)面示意圖,操作面OD與水平地面用平行,操作面離地面的距離0"=1米,伸縮

臂C。可繞著點(diǎn)。旋轉(zhuǎn),點(diǎn)A在OZ)上,為云梯的液壓桿,其中43可伸縮,已知套管03=3米,且套

管OB的長(zhǎng)度不變.消防員為大家介紹:此時(shí),ZAOB=30°,ZBAD^6Q°,CELHG于點(diǎn)、E,交OD于點(diǎn)、尸,

云梯末端工作臺(tái)C上升到了離地面CE=5.5米的高處.(參考數(shù)據(jù):sin53OyQ8,cos53°~0.6,結(jié)果精確到

0.1)

⑴求此時(shí)液壓桿的長(zhǎng)度;(結(jié)果保留根號(hào))

⑵通過消防員的操作,云梯伸縮臂C。繞點(diǎn)。逆時(shí)針旋轉(zhuǎn)23。并伸長(zhǎng)至OC,云梯末端工作臺(tái)。的鉛錘高度

上升了4米至C',請(qǐng)問伸縮臂OC比伸縮臂OC伸長(zhǎng)了多少米?

18.(育才中學(xué)2022-2023學(xué)年九年級(jí)數(shù)學(xué)上學(xué)期第二次自主作業(yè))重慶有六座矗立百年的文峰塔,其中位于

江北區(qū)塔子山的文峰塔被稱為是重慶的“航標(biāo)".小宇與小航準(zhǔn)備測(cè)量塔子山文峰塔的高度,如圖,小宇在點(diǎn)

A處觀測(cè)到文峰塔最高點(diǎn)P的仰角為45。,再沿正對(duì)文峰塔的方向前進(jìn)10m至8處測(cè)得最高點(diǎn)P的仰角為

60。,小航先在點(diǎn)C處豎立長(zhǎng)為2.6m標(biāo)桿尸C,再后退至其眼睛所在位置點(diǎn)。、標(biāo)桿頂尸、最高點(diǎn)尸在一條

直線上,此時(shí)測(cè)得最高點(diǎn)尸的仰角為30。,已知兩人身高均為L(zhǎng)6m(頭頂?shù)窖劬Φ木嚯x忽略不計(jì)).

p

⑴求文峰塔尸。的高度.(結(jié)果保留一位小數(shù));

(2)測(cè)量結(jié)束時(shí)小宇站在點(diǎn)E處(點(diǎn)E在點(diǎn)8的正下方),小航站在點(diǎn)C處,兩人相約在塔底見面,小宇的速

度為L(zhǎng)5m/s,小航速度是其2倍,誰先到達(dá)塔底?請(qǐng)說明理由.(參考數(shù)據(jù):73^1.732)

19.(第八中學(xué)2023-2024學(xué)年下期九年級(jí)開學(xué))拓展小組研制的智能操作機(jī)器人,如圖1,水平操作臺(tái)為/,

底座固定,ABLI,且?!B=50cm,連桿BC長(zhǎng)度為70cm,機(jī)械臂CD長(zhǎng)度為60cm.點(diǎn)B,C是轉(zhuǎn)動(dòng)點(diǎn),

且與始終在同一平面內(nèi).

圖I

(1)轉(zhuǎn)動(dòng)連桿BC,機(jī)械臂CD,使NABC=150。,CD//1,如圖2,求機(jī)械臂端點(diǎn)。離操作臺(tái)/的高度OE的

長(zhǎng)(精確到0.1cm,參考數(shù)據(jù):A/3?1.73).

⑵物品在操作臺(tái)/上,距離底座A端125cm的點(diǎn)M處,轉(zhuǎn)動(dòng)連桿BC,機(jī)械臂CD,機(jī)械臂端點(diǎn)。能否碰

到點(diǎn)M?請(qǐng)說明理由.

20.(第一中學(xué)校2021-2022學(xué)年九年級(jí)上學(xué)期第一次月考)如圖,在建筑物OF的左邊有一個(gè)小山坡,坡底

B、C同建筑底端廠在同一水平線上,斜坡AB的坡比為i=5:12,小李從斜坡底端8沿斜坡走了26米到達(dá)

坡頂A處,在坡頂A處看建筑物的頂端。的仰角a為35。,然后小李沿斜坡AC走了21米到達(dá)底部C點(diǎn),

已知建筑物上有一點(diǎn)E,在C處看建筑物E點(diǎn)的仰角夕為18。,(點(diǎn)A、B、C、D、E、廠在同一平面內(nèi))建

4791

筑物頂端。到E的距離OE長(zhǎng)度為28.8米.(參考數(shù)據(jù):cos35。夕二,tan35°?—,cosl8°?—,tanl8°?-)

D

⑴求小李從斜坡B走到A處高度上升了多少米.

(2)求建筑物。尸的高度.

限時(shí)提升練

(建議用時(shí):30分鐘)

1.重慶市位于我國(guó)西南部、四川盆地東部,地處我國(guó)中西結(jié)合部,是承東啟西、左右傳遞的樞紐,在我國(guó)

經(jīng)濟(jì)發(fā)展總格局和西部大開發(fā)中,具有重要的戰(zhàn)略地位和作用;重慶主城為三面環(huán)水的半島,位于長(zhǎng)江與

嘉陵江匯合處,是由大江托起的中國(guó)最著名的山城.如圖,為了測(cè)量斜坡2C上的建筑物的高度,一個(gè)

數(shù)學(xué)興趣小組,站在山腳C點(diǎn)處測(cè)得建筑物底部3點(diǎn)的仰角為45。,然后沿水平方向走了12米到達(dá)點(diǎn)。,再

沿坡度為1:2.4的斜坡。E走了52米到達(dá)點(diǎn)E,繼續(xù)向前走了50米到達(dá)了一個(gè)比較好的測(cè)量點(diǎn)尸,在尸點(diǎn)

測(cè)得建筑物底部B的仰角為25。,建筑物頂部A的仰角為30°(測(cè)量員身高與測(cè)角儀高度均忽略不計(jì),且A、

B、C、D、E、尸在同一平面內(nèi)).

(1)求點(diǎn)F到山腳C的水平距離;

(2)求建筑物的的高度.(精確到0.1,參考數(shù)據(jù):sin25°?0.38,cos25°?0.93,tan25。=0.40,0=1.40,

#1aL70)

2.外賣,作為現(xiàn)代化快節(jié)奏生活中的一種餐飲服務(wù)形式,近年來在全球范圍內(nèi)迅速發(fā)展并廣受歡迎.小西

在位于點(diǎn)A處的家中購買了位于點(diǎn)。處"稻香園"的外賣食品,外賣騎手收到商家派單后立即趕往點(diǎn)。處取餐,

然后進(jìn)行配送.根據(jù)導(dǎo)航顯示,點(diǎn)A位于點(diǎn)。的西北方向600匹米處,點(diǎn)B位于點(diǎn)A南偏東75。方向且在點(diǎn)

。的北偏東60。方向,點(diǎn)C位于點(diǎn)A的南偏東30。方向,又在點(diǎn)0的正西方向.(參考數(shù)據(jù):

A/6?2.449,V3?1.732,72?1.414)

⑴求的長(zhǎng)(保留根號(hào));

(2)騎手在“稻香園”取餐后開始配送,由于道路AO施工,騎手有兩條送餐路線可以選擇,路線①OfCfA,

速度為每分鐘120米,路線②OfBfA,速度為每分鐘240米,請(qǐng)通過計(jì)算說明,騎手選擇哪條路線才

能更快的將外賣送到小西家?

3.寒假期間,小明和小紅在A處游玩,結(jié)束后相約去學(xué)校自習(xí)室,學(xué)校在點(diǎn)C處,小明家在點(diǎn)。處,小紅

家在點(diǎn)B處,點(diǎn)。在點(diǎn)A的正東方向,點(diǎn)B在點(diǎn)A的正北方向,點(diǎn)C在點(diǎn)B的北偏東60。方向,點(diǎn)C在點(diǎn)。

的東北方向,且AB=200米,3c=800米.

C

⑴求小明家到學(xué)校的距離CD的長(zhǎng)度(結(jié)果保留根號(hào));

(2)小明和小紅同時(shí)從A處出發(fā),兩人先各自回家取書包,再去學(xué)校自習(xí)室,小明步行的速度為40米/分,

小紅步行的速度為45米/分,請(qǐng)通過計(jì)算說明誰先到達(dá)學(xué)校自習(xí)室(兩人取書包的時(shí)間忽略不計(jì)).(參考

數(shù)據(jù):V2?1,414,A/3?1.732,結(jié)果精確到十分位)

重難點(diǎn)05三角函數(shù)實(shí)際問題

明考情.知方向

此題型在2015年和2022年2023年作為解答題進(jìn)行考查,其余8年都作為選擇題進(jìn)行考查,主要考查解直角

三角形與實(shí)際情境相結(jié)合.作為解答題考查是其考查趨勢(shì).該題型結(jié)合實(shí)際情境通過計(jì)算物體的高度或者距

離,考查學(xué)生對(duì)于幾何圖形的實(shí)際應(yīng)用能力.熟練掌握解直角三角形的相關(guān)知識(shí)點(diǎn),靈活運(yùn)用作輔助線的方法。

重難點(diǎn)題型解讀

題型1選擇時(shí)間短的路線

題型2選擇路程少的路線

三角函數(shù)實(shí)際問題

\題型3判斷是否及時(shí)到達(dá)

題型4求實(shí)際距離

【題型1選擇時(shí)間短的路線】

主要考查仰俯角、勾股定理與行程問題,三角函數(shù)的計(jì)算的綜合,掌握仰俯角求路程,勾股定理的運(yùn)用,

三角函數(shù)的計(jì)算方法是解題的關(guān)鍵.除了要比較的大小,還需注意速度對(duì)于時(shí)間的影響。

1.(第八中學(xué)校2024-2025學(xué)年九年級(jí)下學(xué)期開學(xué))2025年重慶"新年第一跑”活動(dòng)在渝北區(qū)中央公園中央廣

場(chǎng)舉辦,活動(dòng)方開辟出了兩條經(jīng)典路線.如圖是兩條跑步路線的平面示意圖,已知終點(diǎn)C在起點(diǎn)A的東北

方向.路線①從起點(diǎn)A出發(fā)向北偏東30。的方向先跑過一段山路到達(dá)補(bǔ)給點(diǎn)8,再沿正東方向跑一段步道即

可到達(dá)終點(diǎn)C;路線②從起點(diǎn)A出發(fā)沿北偏東75。的方向跑過一段山路到達(dá)補(bǔ)給點(diǎn)。,再沿正北方向的步

道跑1800米即可到達(dá)終點(diǎn)C.(參考數(shù)據(jù):0=1.414,V3?1.732,76?2.449)

⑴求AC的長(zhǎng)度;(結(jié)果精確到1米)

⑵某班有兩位同學(xué)小軒和小鵬參加了跑步活動(dòng),小軒選擇路線①,他的平均速度為80米/分鐘,小鵬選擇

了路線②,他的平均速度為90米/分鐘,若兩人同時(shí)出發(fā),請(qǐng)通過計(jì)算說明誰會(huì)先到達(dá)終點(diǎn)?(結(jié)果精確

到0.1)

【答案】⑴AC的長(zhǎng)度約為3477米

⑵小鵬會(huì)先到達(dá)終點(diǎn)

【詳解】(1)如圖,過點(diǎn)。作DE人4c于點(diǎn)E,

由題意,得"CE=45。,/ZME=75°—45°=30°,CD=1800米

在RtZkCDE中,CE=DE=CD—=1800x—=90072?1272.6(米).

22

DE90072/T1

在RtADE中,tanADAE乖:(米)

T

:.AC=AE+CE=1272.6+2204.1?3477(米).

答:AC的長(zhǎng)度約為3477米;

(2)如圖,過點(diǎn)A作A尸交CB的延長(zhǎng)線于點(diǎn)R

由題意,知/&LF=30°,ZC4F=45°

(1)知AC=(9000+900A同米,

在RtZXACF中,AF=CF=AC—=(900應(yīng)+900")x1=(900+9004)米

在RtAB/中,BF=AF-tanZBAE=(900+90073)xtan30°=(900+30073),

AB=23尸=(1800+600A)米

:.BC=CF-BF=600y/3(米)

在RtADE中,AD=2DE=1800A/2(米),

AB+BC

...小軒走路線①需要的時(shí)間為:=1800+120073485(分鐘).

8080

小鵬走路線②需要的時(shí)間為:—+?=1800+1800、"8.3(分鐘).

9090

48.5>48.3,小鵬會(huì)先到達(dá)終點(diǎn).

2.(南開中學(xué)2024-2025學(xué)年九年級(jí)下學(xué)期開學(xué))除夕當(dāng)天,小南和小津相約同時(shí)從家出發(fā)前往外婆家吃年

夜飯.如圖,小南從家A處出發(fā)步行至小青家B處,再步行到達(dá)正東方向的朝旭百貨C處,最后步行到達(dá)

外婆家。處.小津從家F處出發(fā)步行至商店E處,再步行至外婆家.已知8在A的東北方向,且鉆=2000米,

8C=200米,C在E的正北方向,且在。的北偏西60。方向,E既在尸的南偏東53。方向,又在。的南偏西

30。方向,且DE=1500米,f在A的正東方向.(參考數(shù)據(jù):9al.41,石。1.73,sin53°?0.8,cos53°?0.6)

⑴求小津家產(chǎn)處與商店E處的距離;(結(jié)果保留根號(hào))

(2)小南步行的平均速度為90米/分,小津步行的平均速度為60米/分,請(qǐng)計(jì)算說明小南和小津誰先到達(dá)外

婆家.(結(jié)果精確到0.1)

[答案](1)___口__掌米

3

⑵小津先到達(dá)外婆家;計(jì)算見解析

【詳解】(1)解:連接CE,延長(zhǎng)AF交CE于點(diǎn)G,過點(diǎn)8作于點(diǎn)”,如圖所示:

回C在E的正北方向,f在A的正東方向,

SBH±AG,C在3的正東方向,

回四邊形3CG8為矩形,

回GA=3。=200米,CG=BH,

回3在A的東北方向,

SZBAH=45°,

SBH=ABxsin45°=2000Y.—=IOOOA/2(米),

2

5

AH=ABxcos45°=2000x—=10005/2(米),

2

回CG=BH=1000匹米,

回C在。的北偏西60。方向,E在。的南偏西30。方向,

0ACDE=180°-30°-60°=90°,NCED=30°,

CE=DE=^2=IOOOA/3

0cos30°V3(米),

2

CD=DExtan30°=1500x=500A/3(米),

SEG=CE-CG=IOOOA/3-100072=1000(g-0)(米),

回石在產(chǎn)的南偏東53。方向,

團(tuán)NG£F=53。,

肥尸;GE1。。。(石一@5000(石一0)(米),

cos53°0.63

答:小津家行處與商店E處的距離」°0°(6一萬)米;

3

(2)解:根據(jù)解析(1)可知:C0=5006米,斯=5°網(wǎng)―一碼米,

3

團(tuán)小南需要的時(shí)間為:

小津需要的時(shí)間為:

5000

+1500(分鐘),

--------?33.9

60

E34.1>33.9,

回小津先到達(dá)外婆家.

3.(24-25九年級(jí)上?重慶江北?期末)北濱路延伸段建設(shè)是我區(qū)的重大民生項(xiàng)目,在建設(shè)過程中十分重視便

民利民.如圖,四邊形ABC。區(qū)域是規(guī)劃的休閑公園,其中四周是人行步道,對(duì)角線AC、為兩條自行

車道,點(diǎn)8為公園入口.經(jīng)測(cè)量,點(diǎn)A在點(diǎn)8的正東方向,同時(shí)點(diǎn)A在點(diǎn)。的南偏東45。方向,點(diǎn)C在點(diǎn)

D的南偏西60。方向,點(diǎn)C在點(diǎn)A的北偏西75。方向,若AD=9OO0米.(參考數(shù)據(jù):血。1.414,1.732,

A/6?2.449)

(1)求自行車道AC的長(zhǎng).(結(jié)果保留小數(shù)點(diǎn)后一位)

⑵測(cè)得NAD3=15。,小明從A地以60米/分鐘的速度步行前往8地,小明出發(fā)2分鐘后,小剛以小明步行

速度的3倍騎自行車從。出發(fā)趕往8地給小明送東西,問他們誰先到達(dá)8地,通過計(jì)算說明先到達(dá)多長(zhǎng)時(shí)

間?(結(jié)果保留小數(shù)點(diǎn)后兩位)

【答案】(1)1738.4米

(2)小明先到達(dá),先到達(dá)L43分鐘.

【詳解】(1)解:由題意可得:NFDA=/ZMF=45o,/r)E4=90。,/C4G=75。,即/E4c=15。,

如圖:過。作DE2AC,

EZC4D=ZE4D-ZE4C=45o-15o=30°,

0DE=1AD=450A/2,AE=cosACAD-AD=cos3Q0-AD=—x9000=45076米,

22

ZAr>E=90°-ZC4D=60°,

0ZEDF=/EDA-ZFDA=15°,

0/EDC=ZCDF-NFDE=45°

^\DE±AC,

0ZEDC=ZECD=45°,

回CE=Z)E=450匹,

回AC=CE+EA=45O0+45O"al738.4米

(2)解:由題意可得:ZFDA=ZDAF=45°,ZDFA=90°,

BDF=AF,

回AD=9000米,

0FD=AF=sinZFAD-AD=sin45°-AD=—x90072=900米,

2

0ZADB=15°,

EZFDB=ZFDA-ZADB=30°,

0FB=tanZDFB-FD=—x900=300^3,BD=^-FB=600函,

32

0BA=900-30073,

團(tuán)小明從A地以60米/分鐘的速度步行前往2地,小明出發(fā)2分鐘后,小剛以小明騎自行車以180米/分鐘

從D出發(fā)趕往8地,

回小明用時(shí):(9。。一3004)+60=15-56分鐘;小剛共用時(shí):6004+180+2=+2分鐘,

畔/+2-(15一5@=粵^+2-15+5石=粵^一13"43>0,

國(guó)小明先到達(dá),先到達(dá)L43分鐘.

4.(第一中學(xué)校2024-2025學(xué)年九年級(jí)下學(xué)期入學(xué)考)寒假期間,小明和小紅在A處游玩,結(jié)束后相約去

學(xué)校自習(xí)室,學(xué)校在點(diǎn)C處,小明家在點(diǎn)。處,小紅家在點(diǎn)8處,點(diǎn)。在點(diǎn)A的正東方向,點(diǎn)B在點(diǎn)A的

正北方向,點(diǎn)C在點(diǎn)8的北偏東60。方向,點(diǎn)C在點(diǎn)。的東北方向,且AB=200米,BC=800米.

(1)求小明家到學(xué)校的距離CD的長(zhǎng)度(結(jié)果保留根號(hào));

⑵小明和小紅同時(shí)從A處出發(fā),兩人先各自回家取書包,再去學(xué)校自習(xí)室,小明步行的速度為40米/分,

小紅步行的速度為45米/分,請(qǐng)通過計(jì)算說明誰先到達(dá)學(xué)校自習(xí)室(兩人取書包的時(shí)間忽略不計(jì)).(參考數(shù)

據(jù):72?1.414,百a1.732,結(jié)果精確到十分位)

【答案】(1)6000米

⑵小紅先到達(dá)學(xué)校自習(xí)室

【詳解】(1)解:如圖所示,過點(diǎn)C作于點(diǎn)E,過點(diǎn)C作于點(diǎn)/,

依題意,ADJ.AB

回四邊形E4FC是矩形,

又團(tuán)/EBC=60°,3c=800米,

0BE=BC-cos60°=800x—=400BC=800米,

2

團(tuán)CF==AB+3石=200+400=600米,

0ZCDF=45°,

CF

BDF=——=600米,

tan45°

CD=-^=軍=600近

0sin450米

~T

(2)解:在RtEBC中,£C=BC-sin60°=—x800=400y/3

2

SAD=AF-DF=EC-DF=40073-600,

^AD+CD=400百-600+6000

小明步行的速度為40米/分,

回小明到達(dá)學(xué)校自習(xí)室需要40°6+6°°應(yīng)-6°°a23$分鐘

40

AB+=200+800=1000米,小紅步行的速度為45米/分

所用時(shí)間為:絲工22.2分鐘,

45

22.2<23.5

團(tuán)小紅先到達(dá)學(xué)校自習(xí)室.

5.(榮昌初級(jí)中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期期中)五邊形ABCDE是圍繞河CE修建的步道,小依和爸爸

從A前往。處,有兩條線路,如圖:①A-E-D;②A-3-C-O.經(jīng)勘測(cè),點(diǎn)B在點(diǎn)A的正南方向,AB=150

米,點(diǎn)C在點(diǎn)8的正東方向,3。=300米,點(diǎn)。在點(diǎn)C的北偏東60。,點(diǎn)E在點(diǎn)4的東北方向,點(diǎn)E在點(diǎn)

C的正北方向,點(diǎn)。在點(diǎn)E的正東方向.(參考數(shù)據(jù):1.414,A/3?1.732)

(1)求AE的長(zhǎng)度(結(jié)果精確到1米);

⑵小依選擇線路①,爸爸選擇線路②,小依步行速度是80米/分鐘,爸爸步行速度是100米/分鐘,小依

和爸爸同時(shí)從A處出發(fā)且始終保持勻速前進(jìn),請(qǐng)計(jì)算說明小依和爸爸誰先到達(dá)。處?

【答案】⑴424米

(2)爸爸

【詳解】(1)解:如圖,過點(diǎn)A作AfiLLCE于點(diǎn)X;則NAHC=NAHE=90。;

E

D

:45Z

BC

由題意知,NB=NBCH=90°,ZB=ZBCH=ZAHC=90°,

回四邊形ABC"是矩形,

.L=BC=300米,ZBA/f=90°;

:.ZEAH=ZAEH=45°,即是等腰直角三角形,

EH=AH=300^,

由勾股定理得:AE=yjAH2+EH2=300A/2?424(米)。

(2)解:由(1)知,四邊形是矩形,

:.CH=AB=15O^i,

:.CE=CH+HE=450米;

丁點(diǎn)E在點(diǎn)C的正北方向,點(diǎn)。在點(diǎn)E的正東方向,

.-.ZDEC=90°;

在Rt^ECD中,ZECD=60°,ZD=30。,

.?.OC=2CE=900米,DE=6CE=450/米;

E?AE+DE=424+450x1.732?1203(米),

(2)AB+BC+DC=150+300+900=1350(米),

回小依到達(dá)終點(diǎn)的時(shí)間為:1203^80~15.0(分),小依爸爸到達(dá)終點(diǎn)的時(shí)間為:1350+100=13.5(分);

綜上,小依爸爸先到達(dá)。處.

【題型2選擇路程少的路線】

此類題考查了解直角三角形的實(shí)際應(yīng)用,明確題意,準(zhǔn)確構(gòu)造直角三角形是解題的關(guān)鍵。還需注意了解

直角三角形的應(yīng)用、矩形的判定及性質(zhì)、等腰三角形的判定及性質(zhì)。

6.(24-25九年級(jí)上?重慶渝北?期末)如圖,一艘貨船從A港口出發(fā),需要運(yùn)至其正北方向260海里處的港

口8,由于航道條件限制,貨船有兩種可能的航行路線:①由港口A出發(fā),經(jīng)港口C,。休整,最后駛向

港口3;②由港口A出發(fā),經(jīng)港口E休整,最后駛向港口B(休整時(shí)間忽略不計(jì)).經(jīng)勘測(cè),港口C在港口

A東北方向,港口。在港口C正北方向80海里處,港口。在港口B東南方向,港口E在港口B南偏西60。方

向,港口E在港口A北偏西30。方向.(0=1.41,6^1.73)

(1)求港口A和港口E之間的距離.(結(jié)果保留根號(hào))

(2)考慮到航行時(shí)間和成本,貨船需要選擇路程更短的路線,請(qǐng)通過計(jì)算說明是選擇路線①還是路線②.(結(jié)

果精確到個(gè)位)

【答案】⑴1304海里

⑵路線①

【詳解】(1)解:由題意得,ZABE=60°,ZBAE=30°,AB=260海里,

^\ZAEB=90°,

0A£=AB-sin60°=260x#=130百海里,

回港口A和港口E之間的距離為1300海里;

B

A

(2)解:如圖,分別過點(diǎn)C作CF、OG垂直A3,垂足分別為點(diǎn)/、G,則

ZAFC=Z.CFG=Z.DGF=NDGB=90°,

由題意得,ZFAC=45°,NFCD=90。,/GBD=45。,CD=80海里,

回四邊形CDGF是矩形,

回/G=CD=80海里,CF=DG,

0ZFAC=ZGBD=45°,ZAFC=ZDGB=90°,

回△AC5和,BDG是等腰直角三角形,

0AF=CF,BG=DG,

BAF=BG=260~80=90

2

回AC=BD=90近海里,

又回BE=AB-sin30°=260x工=130海里,

2

回路線①的路程為AC+CD+D2=90母+80+90V2合334海里,

路線②的路程為AE+E8=130g+130。355海里,

0334<355,

回應(yīng)選擇路線①.

7.(24-25九年級(jí)上?重慶沙坪壩?期末)某校開展了“尋根?行走的青春”研學(xué)活動(dòng).如圖所示,國(guó)防教育8在

勞動(dòng)教育A正北方向,AB=200米;科學(xué)研究C在國(guó)防教育2北偏東30。方向,3C=260米;素質(zhì)拓展。

在科學(xué)研究C東南方向;德育實(shí)踐E在素質(zhì)拓展D正南方向,且在勞動(dòng)教育A正東方向,AE=300米.(參

考數(shù)據(jù):V2?1.4,6、1.7)

(1)求C,。兩處之間的距離(結(jié)果精確到個(gè)位);

(2)小沙和小坪從勞動(dòng)教育A處出發(fā),準(zhǔn)備一起前往素質(zhì)拓展。處,有兩條路可選擇:①AfCfO;

②AFETD,請(qǐng)通過計(jì)算說明選擇哪一條路較近.

【答案】⑴C,D兩處之間的距離約為238米

⑵選擇線路②較近,說明見解析

【詳解】(1)解:如圖,過點(diǎn)C作C尸_LAB于點(diǎn)尸,延長(zhǎng)尸C交即延長(zhǎng)線于點(diǎn)G.

由題意可知,AB±AE,DE±AE,ZDCG=45°,ZCBF=30°,

國(guó)四邊形AEGb是矩形,

回NG=90°,FG=AE=300米,

在Rt3cp中,/C=;8C=130米,

回CG=BG—PC=170米,

在RtACDG中,CD=———=170=17072?238(米),

cosZDCGcos45°

答:CD兩處之間的距離約為238米.

(2)解:由(1)可知,四邊形A£G/是矩形,CG=170米,。=170血米,

回NG=90°,/G=AE=300米,EG=AF,

在Rt中,BF=BC-cosZCBF=260x=13073(米),

2

E1AB=2OO米,

回EG=A尸=42+2/=(200+130⑹米,

在RtACDG中,DG=CG-tanNOCG=170米,

回DE=EG-£>G=(30+1304)米,

團(tuán)線路①C->D的長(zhǎng)為AB+BC+Cr>=200+260+1700B698(米),

線路②Af的長(zhǎng)為AE+DE=300+30+130ga551(米),

因?yàn)?98>551,

所以選擇線路②較近.

8.(24-25九年級(jí)上?重慶南岸?期末)如圖,A,8兩地的直線距離為7km,但因湖水相隔,不能直接到達(dá).從

A到8有兩條路可走.線路1:AA-C-B;線路2:仄A-D-B.從地圖上可得到以下數(shù)據(jù):點(diǎn)C位于A

的正北方向,且在8的北偏西63。的方向;點(diǎn)。在A的東南方向,且位于B的南偏西37。方向.(參考數(shù)據(jù):

5/2?1.4?V5?2.24,sin63°?0.89,cos63°?0.45,tan63O?2,sin37°?0.60,cos37°?0.80,tan37°?0.75.)

D

(1)求AD的長(zhǎng)度;(保留1位小數(shù))

(2)通過計(jì)算說明,線路1和線路2,那條線路更短.

【答案】⑴5.7km

⑵線路2比線路1短,見解析

【詳解】(1)解:過點(diǎn)。作DESAB,垂足為E.

0ZA£D=9O°.

0ZE4D=45°,NEDB=37。,

SAE^DE,BE=DEgan37°=0.75AE.

團(tuán)AB=AE*+5E=7km,

團(tuán)A£+0.75AE=7.

團(tuán)AE=4.

^\AE=DE=4km,BE=3km.

0AD=V2AE=4V2?5.7km.

故A。的長(zhǎng)為5.7km.

(2)解:由(1)可得,在Rt△班史中,

BE

即&)=—=5km.

sin37°0.60

40

在RL^ACB中,tanZC=tan63°=——

AC

AB

即AC=?=3.5km.

tan6302

AB

sin63°=

BC

AB

即BC=?-----?7.865km

sin63°0.89

線路

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論