《導(dǎo)數(shù)的計(jì)算》名師課件2_第1頁
《導(dǎo)數(shù)的計(jì)算》名師課件2_第2頁
《導(dǎo)數(shù)的計(jì)算》名師課件2_第3頁
《導(dǎo)數(shù)的計(jì)算》名師課件2_第4頁
《導(dǎo)數(shù)的計(jì)算》名師課件2_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

導(dǎo)數(shù)的計(jì)算1、了解常數(shù)函數(shù)和冪函數(shù)的求導(dǎo)方法和規(guī)律,會求任意冪函數(shù)的導(dǎo)數(shù);2、掌握基本初等函數(shù)的導(dǎo)數(shù)公式,并能利用這些公式求基本初等函數(shù)的導(dǎo)數(shù)。學(xué)習(xí)目標(biāo)1.解析幾何中,過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動過程中,在某時(shí)刻的瞬時(shí)速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.2.求函數(shù)的導(dǎo)數(shù)的方法是:1復(fù)習(xí)引入說明:上面的方法中把x換x0即為求函數(shù)在點(diǎn)x0處的導(dǎo)數(shù).3.函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在x=x0

處的函數(shù)值,即.這也是求函數(shù)在點(diǎn)x0

處的導(dǎo)數(shù)的方法之一.4.函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)的幾何意義,就是曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率.5.求切線方程的步驟:(1)求出函數(shù)在點(diǎn)x0處的變化率,得到曲線在點(diǎn)(x0,f(x0))的切線的斜率。(2)根據(jù)直線方程的點(diǎn)斜式寫出切線方程,即1復(fù)習(xí)引入公式1:

y=kx+b-20-2110根據(jù)導(dǎo)數(shù)的定義可以得出一些常見函數(shù)的導(dǎo)數(shù)公式:2新課講解

請注意公式中的條件是,但根據(jù)我們所掌握的知識,只能就的情況加以證明.這個公式稱為冪函數(shù)的導(dǎo)數(shù)公式.事實(shí)上n可以是任意實(shí)數(shù).公式2:12新課講解公式3:公式4:公式1:

公式2:根據(jù)導(dǎo)數(shù)的定義可以得出一些常見函數(shù)的導(dǎo)數(shù)公式:2新課講解公式7:公式8:公式5:

公式6:根據(jù)導(dǎo)數(shù)的定義可以得出一些常見函數(shù)的導(dǎo)數(shù)公式:2新課講解思考:如何求下列函數(shù)的導(dǎo)數(shù):2新課講解導(dǎo)數(shù)的運(yùn)算法則:(和差積商的導(dǎo)數(shù))輪流求導(dǎo)之和上導(dǎo)乘下,下導(dǎo)乘上,差比下方2新課講解如果上式中f(x)=c,則公式變?yōu)椋?新課講解3例題講解解題策略(1)若所求函數(shù)符合導(dǎo)數(shù)公式,則直接利用公式求解.(2)若給出的函數(shù)不符合導(dǎo)數(shù)公式,則通過恒等變換對函數(shù)進(jìn)行化簡或變形后求導(dǎo),如根式要化成指數(shù)冪的形式求導(dǎo).用公式求函數(shù)導(dǎo)數(shù)的方法鞏固訓(xùn)練3例題講解3例題講解解題策略利用導(dǎo)數(shù)的公式及運(yùn)算法則求導(dǎo)的思路

鞏固訓(xùn)練鞏固訓(xùn)練3例題講解23例題講解2解題策略

(1)此類問題往往涉及切點(diǎn)、切點(diǎn)處的導(dǎo)數(shù)、切線方程三個主要元素.其他的條件可以進(jìn)行轉(zhuǎn)化,從而轉(zhuǎn)化為這三個要素間的關(guān)系.(2)準(zhǔn)確利用求導(dǎo)法則求出導(dǎo)函數(shù)是解決此類問題的第一步,也是解題的關(guān)鍵,務(wù)必做到準(zhǔn)確.(3)分清已知點(diǎn)是否在曲線上,若不在曲線上則要設(shè)出切點(diǎn),這是解題時(shí)的易錯點(diǎn).關(guān)于求導(dǎo)公式法則的綜合應(yīng)用鞏固訓(xùn)練c

素養(yǎng)提煉第一類為冪函數(shù),y′=(xα)′=αxα-1(注意冪指數(shù)α可推廣到全體非零實(shí)數(shù));第二類為三角函數(shù),可記為正弦函數(shù)的導(dǎo)數(shù)為余弦函數(shù),余弦函數(shù)的導(dǎo)數(shù)為正弦函數(shù)的相反數(shù);1.基本初等函數(shù)的導(dǎo)數(shù)公式可分為四類素養(yǎng)提煉素養(yǎng)提煉素養(yǎng)提煉1.要切實(shí)掌握常見函數(shù)的導(dǎo)數(shù)公式:2、對于簡單函數(shù)的求導(dǎo),關(guān)鍵是合理轉(zhuǎn)化函數(shù)關(guān)系式為可以直接應(yīng)用公式的基本函數(shù)的模式.3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論