2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練:方程與不等式(含答案)_第1頁
2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練:方程與不等式(含答案)_第2頁
2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練:方程與不等式(含答案)_第3頁
2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練:方程與不等式(含答案)_第4頁
2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練:方程與不等式(含答案)_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練方程與不等式專題訓(xùn)練

一、選擇題

_,21?a+ab

1.已知一+—=1(a+bWO).則---=()

aba+b

1

A.-B.1C.2D.3

2

2.若關(guān)于x的一元二次方程(川-1)f+x+i=o有實(shí)數(shù)根,則根的取值范圍是()

A.mV掾B.垓且相#1C.m<D.機(jī)工叔且znWl

4444

3.關(guān)于尤的不等式組『-2xV0恰好有2個整數(shù)解,則。滿足的范圍是()

(x<a

A.3W〃V4B.4W〃V5C.D.a>5

4.摩拜共享單車計(jì)劃2023年第三季度(8,9,10月)連續(xù)3個月對成都投放新型摩拜單

車,計(jì)劃8月投放3000臺,第三季度共投放12000臺,每月按相同的增長率投放,設(shè)增

長率為x,則可列方程()

A.3000(1+無)2=12000

B.3000(1+x)+3000(1+無)2=12000

C.3000(1-%)2=12000

D.3000+3000(1+x)+3000(1+x)2=12000

3a+1

5.若關(guān)于x的分式方程.-=。無解,則a的值為()

x+1

11

A.-jB.-1C.—掾或0D.0或-1

6.已知關(guān)于尤,y的方程組卜十爪'=7①將此方程組的兩個方程左右兩邊分別對應(yīng)

(mx—y=2+

相加,得到一個新的方程,當(dāng)相每取一個值時,就有一個方程,這些方程有一個公共解,

這個公共解為()

,1y=-1=-4ly=-4-ly=4

7.若關(guān)于x的不等式組『支的解集是x<l,則。的值可以是中()

1%<1

A.-1B.C.0D.2

二、填空題

8.已知(〃-1)%叫2024=0是關(guān)于%的一元一次方程,則。=.

11

9.已知關(guān)于x的一元一次方程肅7+3=2%+。的解為x=2,那么關(guān)于y的一元一次方程被

乙vz乙±*乙U乙jt,

(y+1)+3=2(y+1)+b的解為y=.

10.若關(guān)于尤,y的二元一次方程組:5k的解也是方程3x_28的解,則k的值

為.

11.若關(guān)于X,y的方程組,的“=的解是則方程組「。6一的解

是.

12.若m2+41^—4/11-4n-5,貝?。莸闹禐?

13.已知xi和X2為方程x2-?u+w=0的兩個實(shí)數(shù)根,且無1-X2=2〃Z+1,則實(shí)數(shù)〃的最大值

為.

(2%+1、[2

14.若關(guān)于尤的不等式組有解且至多3個整數(shù)解,關(guān)于y的分式方程;一

3(1-x)<x-a—

a

3=——的解為整數(shù),那么符合條件的所有整數(shù)a的和為

y-i

15.不等式組[”一5>0無解,則機(jī)的取值范圍是.

三、解答題

16.已知關(guān)于尤、y的方程組出二:二江廣.

(%~r4,y一/十a(chǎn)

(1)若此方程組的解滿足-l<x+yW3,求a的取值范圍;

(2)在(1)的條件下,若關(guān)于機(jī)的不等式2a7〃-機(jī)>2a-1的解集為機(jī)<1,求滿足條

件的。的整數(shù)值.

17.某中學(xué)為落實(shí)《教育部辦公廳關(guān)于進(jìn)一步加強(qiáng)中小學(xué)生體質(zhì)健康管理工作的通知》文件

要求,決定增設(shè)籃球、足球兩門選修課程,需要購進(jìn)一批籃球和足球,已知購買2個籃

球和3個足球共需費(fèi)用510元;購買3個籃球和5個足球共需費(fèi)用810元.

(1)求籃球和足球的單價(jià)分別是多少元.

(2)學(xué)校計(jì)劃采購籃球、足球共50個,并要求籃球不少于30個,且總費(fèi)用不超過5460

元,那么有哪幾種購買方案?

18.某校因物理實(shí)驗(yàn)室需更新升級,現(xiàn)決定購買甲、乙兩種型號的滑動變阻器.若購買甲種

滑動變阻器用了1440元,購買乙種用了2430元,購買的乙種滑動變阻器的數(shù)量是甲種

的1.5倍,乙種滑動變阻器單價(jià)比甲種單價(jià)貴6元.

(1)求甲、乙兩種滑動變阻器的單價(jià)分別為多少元;

(2)該校擬計(jì)劃再訂購這兩種滑動變阻器共100個,總費(fèi)用不超過5000元,那么該校

最少購買多少個甲種滑動變阻器?

19.【閱讀材料】

①“換元法”是我們解數(shù)學(xué)題時常用的一種方法.它主要是將一個較為復(fù)雜的表達(dá)式用

一個較為簡單的符號或字母代替,從而簡化問題,降低難度,使問題易于解決.

121

②例如解分式方程—7+—7=3時,可以設(shè)—-=y,則原方程可以化為y+2y=3,解

■ALI,IA.I.L

1一一

得y=l,即---=1,去分母得x+l=l,所以%=0,檢驗(yàn):當(dāng)冗=0時,x+IWO,所以x

%+1

=0是原方程的解.

【基本應(yīng)用】

x2.x

(1)用換元法解方程—-+—-=6;

%-2%-2

(2)已知x,y滿足方程(2/+/+4)(2?+/-4)=20,結(jié)合“換元法”的解題思路,

求2x1+y2的值.

【創(chuàng)新應(yīng)用】

(3)結(jié)合“換元法”的思路探究分解因式(/-4x+2)(/-4x+6)+4.

20.已知關(guān)于x的一元二次方程W-(m+2)x+m-1=0.

(1)求證:無論相取何值,方程都有兩個不相等的實(shí)數(shù)根;

(2)如果方程的兩個實(shí)數(shù)根為xi,xi,且好+好-XI%2=9,求加的值.

21.隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某

汽車銷售公司計(jì)劃購進(jìn)一批新能源汽車嘗試進(jìn)行銷售,據(jù)了解2輛A型汽車、3輛2型

汽車的進(jìn)價(jià)共計(jì)80萬元;3輛A型汽車、2輛8型汽車的進(jìn)價(jià)共計(jì)95萬元

(1)求A、B兩種型號的汽車每輛進(jìn)價(jià)分別為多少萬元?

(2)若該公司計(jì)劃正好用200萬元購進(jìn)以上兩種型號的新能源汽車(兩種型號的汽車均

購買),請你幫助該公司設(shè)計(jì)購買方案;

(3)若該汽車銷售公司銷售1輛A型汽車可獲利8000元,銷售1輛8型汽車可獲利5000

元,在(2)中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大

利潤是多少元?

參考答案

、選擇題

21

1.【解答】解:+-=1(a+bNO),

ab

2b+a

=1

ab

??〃+2bab,

.a+ab

,?a+b

_a+a+2b

—a+b

_2(a+b)

—a+b

=2,

故選:C.

2.【解答]解:因?yàn)殛P(guān)于x的一元二次方程(m-1)~+戶1=0有實(shí)數(shù)根,

訴wpn-1W0

m^[j=l2-4(rn-l)>0,

解得m<叔且m#1.

q

故選:D.

3.【解答】解:解不等式4-2x<0得x>2,

???關(guān)于x的不等式組恰好有2個整數(shù)解,

;.4Wa<5,

故選:B.

4.【解答]解:由題意得:3000+3000(1+x)+3000(1+x)2=12000.

故選:D.

5.【解答]解:方程去分母得,3。+1="+。,

??CLX2〃+1?

如果原分式方程無解,那么分兩種情況:

①當(dāng)4=0時,方程ax=2a+l無解,所以分式方程四二=a無解;

x+1

②40,解方程辦=2。+1,得比=第上

當(dāng)分母尤+1=0即%=-1時原分式方程無解.

經(jīng)檢驗(yàn),符合題意,

13a+1

故當(dāng)〃=0或a=-工時,分式方程-----=a無解.

3%+1

故選:C.

6.【解答】解:①+②得,

x+my+mx-y=9-^-m

x-y-9+mx+my-m=0

x-y-9+m(x+y-1)=0

根據(jù)題意,這些方程有一個公共解,與根的取值無關(guān),

fx—y—9=0

+y-1=0'

解得:i4-

故選:c.

y

的解集是X<1,

{X<1

???〃的值可以是:2,

故選:D.

、填空題

8.【解答】解:由題意得:|。|=1且〃-1W0,

??CL~~~1,

故答案為:-1.

一1

9.【解答】解:,??關(guān)于x的一元一次方程=7%+3=2x+b的解為尸2,

2024

一1

;?關(guān)于y的一'兀一次方程2024(>1)+3=2(y+1)+b中y+l=2,

解得:y=L

故答案為:1.

io.【解答】解:卜一合①,

[x+y=k@

①+②,得3x=6k,

??x~~2k.

把x=2k代入②,得2k+y=k,

??y=-k.

又?.?3%-2y=8,

6k+2k=8.

k=1.

故答案為:1.

11.【解答】解:由題意得:把后二:代入方程組a±x+bry=R中彳曰

a2x+b2y=c2、

產(chǎn)%+6bl=q

Gg+6b2=C2

.—3瓦y=4cl

?{5a2x—352y=4c2,

「5.-3.

4aix+丁瓦、-q

5.-3

Gg%+方872y=C2

-TX=5

黃=6

%=4

解得:

y=-8

故答案為:[Jzt

12.【解答】解:%2+4"2=4"Z-4W-5,

Cm-2)2+⑵+1)2=0,

則m-2=0且2〃+1=0,

解得相=2.n--

1

所以wz=2X(―2)—-1.

故答案為:-1

13?【解答】解:由條件可知%1+%2=機(jī),xix2=n,A=m2-4〃20,

Vxi-X2=2m+1,

2

(%i—%2)2—(2m+l)=47n2+47n+i,

,-*(%1—12)2=(%1+X2y-4X62,

2

-"-n=%1%2=4+%2)2-01-X2)]

]

=4[m2—(4m2+4m+1)]

=--3rm2-

-1<o-

(:)(;)一(-)

4X-X-l21

.?.a存在最大值,最大值為

12

故答案為:

x<T4,

14.【解答】解:解不等式組得3+a,

(北,

:不等式組有解且最多有3個整數(shù)解,小于4的連續(xù)3個整數(shù)時3、2、1,

解得:-3VaV13,

解關(guān)于y的分式方程-3=黃y得了=

??,關(guān)于y的分式方程有整數(shù)解,

1—CL

.,.yWl(分母不為0),即工一力1,解得a#-2,

符合條件的。為1,4,7,10,

...所有整數(shù)。的和為22,

故答案為:22.

15?【解答】解:..?不等式組,一5>°無解,

.-.[x>5無解,

lx<m

故答案為:m^5.

三、解答題

16.【解答】解:⑴卜-y=1+2%,

1%+4y=2+a@

①+②得:3i+3y=3+3〃,

?\x+y=1+a,

-l〈x+yW3,

???-l<l+aW3,

解得-2V〃W2;

(2)..,關(guān)于m的不等式2am-m>2a-1的解集為m<L

:.2a-l<0,

.J

??ci2,

-2V〃W2,

1

-2<a<^,

滿足條件的。的整數(shù)值是-1、0.

17.【解答】解:(1)設(shè)籃球的單價(jià)為。元,足球的單價(jià)為b元,

由題意可得:{2a+3b=510

3a+5b=810'

答:籃球的單價(jià)為120元,足球的單價(jià)為90元;

(2)設(shè)采購籃球x個,則采購足球?yàn)?50-尤)個,

..?要求籃球不少于30個,且總費(fèi)用不超過5460元,

.產(chǎn)230

,,(120x+90(50-%)<5460'

解得30WxW32,

:尤為整數(shù),

尤的值可為30,31,32,

共有三種購買方案,

方案一:采購籃球30個,采購足球20個;

方案二:采購籃球31個,采購足球19個;

方案三:采購籃球32個,采購足球18個.

18.【解答】解:(1)設(shè)甲種滑動變阻器的單價(jià)為x元,則乙種滑動變阻器的單價(jià)為(x+6)

解得:x=48,

經(jīng)檢驗(yàn),x=48是所列方程的根,且符合題意.

.??x+6=54,

答:甲種滑動變阻器的單價(jià)是48元,乙種滑動變阻器的單價(jià)是54元;

(2)設(shè)該校購買甲種滑動變阻器機(jī)個,則購買乙種滑動變阻器(100-m)個,

根據(jù)題意得:48m+54(100-7/1)W5000,

2

解得:wiN66§,

答:該校最少可以購買67個甲種滑動變阻器.

x

19?【解答】解:(1)設(shè)—-=m,

x-2

則原方程化為m+2m=6,

解得:m=2,

則三=2,

%-2

解得:x=4,

經(jīng)檢驗(yàn),x=4是分式方程的解;

(2)設(shè)2冗2+/=小

則原方程化為(/4)(n-4)=20,

整理得:層=36,

則n=6或〃=-6(舍去),

貝!J2f+/=6;

(3)設(shè)x2-4x=a,

則(x2-4x+2)(x2-4%+6)+4

=(〃+2)(〃+6)+4

=。2+8〃+16

=(〃+4)2,

則原式=(x2-4x+4)2

=(x-2)4.

20.【解答】解:(1)/-(m+2)x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論