南昌大學(xué)《機器人學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
南昌大學(xué)《機器人學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
南昌大學(xué)《機器人學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
南昌大學(xué)《機器人學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
南昌大學(xué)《機器人學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁南昌大學(xué)

《機器人學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在智能推薦系統(tǒng)中發(fā)揮著關(guān)鍵作用。假設(shè)一個電商平臺要利用人工智能為用戶提供個性化推薦,以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.通過分析用戶的瀏覽歷史、購買行為等數(shù)據(jù),了解用戶的興趣偏好B.利用協(xié)同過濾算法可以找到與目標用戶相似的其他用戶,進行推薦C.深度學(xué)習(xí)模型能夠捕捉復(fù)雜的用戶行為模式,提供更精準的推薦D.智能推薦系統(tǒng)能夠完全滿足用戶的所有需求,不需要用戶進一步篩選和選擇2、人工智能在醫(yī)療影像診斷中的應(yīng)用不斷發(fā)展。以下關(guān)于人工智能在醫(yī)療影像診斷應(yīng)用的說法,不正確的是()A.能夠輔助醫(yī)生更快速、準確地檢測病變和異常B.可以提高診斷的一致性和重復(fù)性,減少人為誤差C.人工智能的診斷結(jié)果可以完全替代醫(yī)生的專業(yè)判斷D.需要與醫(yī)生的臨床經(jīng)驗和專業(yè)知識相結(jié)合,共同為患者提供診斷服務(wù)3、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點進行決策。假設(shè)要解決一個分類問題,數(shù)據(jù)具有高維度和復(fù)雜的非線性關(guān)系,以下關(guān)于算法選擇的描述,正確的是:()A.線性分類算法如邏輯回歸一定能夠處理這種復(fù)雜的數(shù)據(jù),無需考慮其他算法B.決策樹算法在處理高維度和非線性數(shù)據(jù)時總是表現(xiàn)最佳C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)對于處理圖像等具有空間結(jié)構(gòu)的數(shù)據(jù)效果顯著,但對于一般的高維數(shù)據(jù)可能不太適用D.支持向量機(SVM)結(jié)合核函數(shù)能夠有效地處理非線性分類問題,是一個合適的選擇4、人工智能在金融風(fēng)險管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測市場風(fēng)險,以下關(guān)于模型評估指標的選擇,哪一項是最重要的?()A.準確率,即模型正確預(yù)測的比例B.召回率,即模型正確識別出風(fēng)險的比例C.F1值,綜合考慮準確率和召回率D.均方誤差,衡量模型預(yù)測值與實際值之間的差異5、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對計算資源要求不高,任何設(shè)備都能輕松應(yīng)用6、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設(shè)備上部署模型。假設(shè)要將一個大型的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計算量B.模型壓縮可能會導(dǎo)致一定程度的性能損失,但可以通過優(yōu)化算法來彌補C.模型壓縮和優(yōu)化只適用于深度學(xué)習(xí)模型,對傳統(tǒng)機器學(xué)習(xí)模型無效D.需要在模型性能和資源消耗之間進行平衡,找到最優(yōu)的解決方案7、在人工智能的語音情感識別中,以下哪個特征對于準確判斷情感可能最具挑戰(zhàn)性?()A.語音的語調(diào)B.語音的語速C.說話人的口音D.背景噪音8、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠遠多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對少數(shù)類進行過采樣,增加其數(shù)量B.對多數(shù)類進行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別9、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù),旨在保護數(shù)據(jù)隱私的前提下進行模型訓(xùn)練。假設(shè)多個機構(gòu)想要聯(lián)合訓(xùn)練一個人工智能模型,但又不希望共享各自的數(shù)據(jù)。那么,聯(lián)邦學(xué)習(xí)是如何實現(xiàn)這一目標的?()A.將所有數(shù)據(jù)集中到一個中心服務(wù)器進行訓(xùn)練B.每個機構(gòu)只上傳模型參數(shù),在云端進行聚合C.通過加密技術(shù)直接共享原始數(shù)據(jù)進行訓(xùn)練D.不需要數(shù)據(jù)交互,各自獨立訓(xùn)練模型10、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.考慮交通狀況、貨物重量和配送時間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會受到任何突發(fā)情況的影響D.實時更新路況信息,動態(tài)調(diào)整配送路徑,提高配送效率11、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大的潛力。以下關(guān)于人工智能在農(nóng)業(yè)應(yīng)用的描述,不正確的是()A.可以通過圖像識別技術(shù)監(jiān)測農(nóng)作物的生長狀況和病蟲害B.能夠根據(jù)氣象數(shù)據(jù)和土壤條件進行精準的灌溉和施肥決策C.人工智能在農(nóng)業(yè)中的應(yīng)用受限于農(nóng)村地區(qū)的基礎(chǔ)設(shè)施和技術(shù)水平,發(fā)展緩慢D.借助智能傳感器和物聯(lián)網(wǎng)技術(shù),實現(xiàn)農(nóng)業(yè)生產(chǎn)的智能化管理12、假設(shè)在一個智能交通系統(tǒng)中,需要利用人工智能算法來優(yōu)化交通信號燈的控制,以減少交通擁堵和提高道路通行效率??紤]到實時交通流量的變化和復(fù)雜的道路網(wǎng)絡(luò),以下哪種技術(shù)可能是核心?()A.深度學(xué)習(xí)預(yù)測交通流量B.傳統(tǒng)的數(shù)學(xué)優(yōu)化算法C.基于案例的推理D.蒙特卡羅模擬13、在人工智能的自然語言處理領(lǐng)域中,當(dāng)需要開發(fā)一個能夠準確理解和生成人類語言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問題時,以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語義理解D.語用分析14、在人工智能的發(fā)展中,模型的評估指標至關(guān)重要。以下關(guān)于人工智能模型評估指標的描述,不準確的是()A.準確率、召回率和F1值常用于分類任務(wù)的評估B.均方誤差(MSE)和平均絕對誤差(MAE)常用于回歸任務(wù)的評估C.評估指標的選擇只取決于數(shù)據(jù)的類型,與具體的應(yīng)用場景無關(guān)D.可以結(jié)合多個評估指標來全面評估模型的性能15、在人工智能的模型評估中,除了準確率和召回率等常見指標,以下哪種指標對于衡量模型的性能也很重要?()A.F1值,綜合考慮準確率和召回率B.均方誤差,用于回歸問題C.混淆矩陣,詳細展示分類結(jié)果D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述計算機視覺的研究內(nèi)容和應(yīng)用。2、(本題5分)解釋人工智能在智能設(shè)備故障診斷中的策略。3、(本題5分)說明決策樹算法的構(gòu)建過程和特點。三、操作題(本大題共5個小題,共25分)1、(本題5分)在TensorFlow中,構(gòu)建一個深度強化學(xué)習(xí)模型(如A2C或DDPG),控制一個機器人在模擬環(huán)境中完成特定的任務(wù),如抓取物體或行走。觀察模型的訓(xùn)練效果和機器人的行為表現(xiàn)。2、(本題5分)使用機器學(xué)習(xí)算法對能源消耗數(shù)據(jù)進行預(yù)測,幫助企業(yè)制定節(jié)能策略,降低能源成本。3、(本題5分)在Python中,運用頭腦風(fēng)暴優(yōu)化算法解決一個函數(shù)優(yōu)化問題。定義靈感產(chǎn)生和選擇機制,展示算法的搜索過程。4、(本題5分)借助遺傳算法優(yōu)化一個物流配送問題,考慮交通擁堵、路況等因素,提高配送的效率和可靠性。5、(本題5分)使用機器學(xué)習(xí)算法對能源消耗數(shù)據(jù)進行分析,預(yù)測未來的能源

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論