八年級(jí)數(shù)學(xué)下冊(cè)第一章三角形的證明等腰與直角三角形省公開(kāi)課一等獎(jiǎng)新課獲獎(jiǎng)?wù)n件_第1頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)第一章三角形的證明等腰與直角三角形省公開(kāi)課一等獎(jiǎng)新課獲獎(jiǎng)?wù)n件_第2頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)第一章三角形的證明等腰與直角三角形省公開(kāi)課一等獎(jiǎng)新課獲獎(jiǎng)?wù)n件_第3頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)第一章三角形的證明等腰與直角三角形省公開(kāi)課一等獎(jiǎng)新課獲獎(jiǎng)?wù)n件_第4頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)第一章三角形的證明等腰與直角三角形省公開(kāi)課一等獎(jiǎng)新課獲獎(jiǎng)?wù)n件_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

等腰、直角三角形1/34基礎(chǔ)知識(shí)自主學(xué)習(xí)1.等腰三角形:

(1)性質(zhì):

相等,

相等,底邊上高線、中線、頂角角平分線“三線合一”;

(2)判定:有兩邊相等、兩角相等或兩線合一三角形是等腰三角形.2.等邊三角形:

(1)性質(zhì):

相等,三內(nèi)角都等于

;

(2)判定:三邊相等、三內(nèi)角相等或有一個(gè)角是60°等腰三角形是等邊三角形.關(guān)鍵點(diǎn)梳理兩腰兩底角三邊60°2/343.直角三角形:在△ABC中,∠C=90°.(1)性質(zhì):邊與邊關(guān)系:(勾股定理)a2+b2=

;

(2)角與角關(guān)系:∠A+∠B=

;

(3)邊與角關(guān)系:若∠A=30°,則a=c,b=c;若a=c,則∠A=30°;若∠A=45°,則a=b=c;若a=c,則∠A=45°;斜邊上中線m=c=R.其中R為三角形外接圓半徑.

(4)判定:有一個(gè)角是直角三角形是直角三角形;假如三角形三邊長(zhǎng)a、b、c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形;假如三角形一條邊上中線等于這條邊二分之一,那么這個(gè)三角形是直角三角形.c290°3/34[難點(diǎn)正本疑點(diǎn)清源]

1.等腰三角形特殊性

“等邊對(duì)等角”是今后我們證實(shí)角相等又一個(gè)主要依據(jù).“等角對(duì)等邊”能夠判定一個(gè)三角形是等腰三角形,同時(shí)也是今后證實(shí)兩條線段相等主要依據(jù).等邊三角形是等腰三角形,但等腰三角形不一定是等邊三角形,等邊三角形擁有等腰三角形全部性質(zhì),但不分頂角、底角、腰、底邊.因?yàn)榈冗吶切稳魏我粋€(gè)角都為60°,任何一條邊都可看做腰或底邊.解答等腰三角形相關(guān)問(wèn)題時(shí),常作輔助線,結(jié)構(gòu)出“三線合一”基本圖形.在添加輔助線時(shí),要依據(jù)詳細(xì)情況而定,表示輔助線語(yǔ)句,不能限制條件過(guò)多,如一邊上高而且要平分這條邊;作一邊上中線而且垂直平分這條邊;作一個(gè)角平分線并且垂直對(duì)邊等等,這些都是不正確.4/34基礎(chǔ)自測(cè)1.(·濟(jì)寧)假如一個(gè)等腰三角形兩邊長(zhǎng)分別是5cm和6cm,那么此三角形周長(zhǎng)是(

)A.15cmB.16cmC.17cmD.16cm或17cm

答案D

解析這個(gè)三角形周長(zhǎng)是5+5+6=16或6+6+5=17.5/342.(·銅仁)以下關(guān)于等腰三角形性質(zhì)敘述錯(cuò)誤是(

)A.等腰三角形兩底角相等

B.等腰三角形底邊上高、底邊上中線、頂角平分線互相重合

C.等腰三角形是中心對(duì)稱圖形

D.等腰三角形是軸對(duì)稱圖形

答案C

解析等腰三角形是軸對(duì)稱圖形,不是中心對(duì)稱圖形.6/343.(·蕪湖)如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE交點(diǎn),CD=4,則線段DF長(zhǎng)度為(

)A.2

B.4C.3

D.4

答案B

解析在Rt△ABD中,∠ABD=45°,可得AD=BD,易證△BDF≌△ADC,所以DF=CD=4.7/348/349/345.(·雞西)如圖,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上點(diǎn)E重合,展開(kāi)后,折痕AD交BO于點(diǎn)F,連結(jié)DE、EF.以下結(jié)論:①tan∠ADB=2;②圖中有4對(duì)全等三角形;③若將△DEF沿EF折疊,則點(diǎn)D不一定落在AC上;④BD=BF;⑤S四邊形DFOE=S△AOF,上述結(jié)論中正確個(gè)數(shù)是(

)A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案C10/3411/3412/34題型分類深度剖析【例1】

(1)方程x2-9x+18=0兩個(gè)根是等腰三角形底和腰,則這個(gè)三角形周長(zhǎng)為(

)A.12B.12或15C.15D.不能確定

答案C

解析解方程x2-9x+18=0,得x1=3,x2=6,周長(zhǎng)為3+6+6=15,應(yīng)選C.(2)假如等腰三角形一個(gè)內(nèi)角是80°,那么頂角是________度.

答案80或20

解析頂角是80°,或當(dāng)?shù)捉鞘?0°時(shí),頂角是180°-2×80°=20°.探究提升在等腰三角形中,假如沒(méi)有明確底邊和腰,某一邊能夠是底,也能夠是腰.一樣,某一角能夠是底角也能夠是頂角,必須仔細(xì)分類討論.題型一等腰三角形相關(guān)邊角討論13/34知能遷移1

(1)(·株洲)如圖,△ABC中,AB=AC,∠A=36°,AC垂直平分線交AB于E,D為垂足,連接EC.①求∠ECD度數(shù);②若CE=5,求BC長(zhǎng).14/34解①解法一:∵DE垂直平分AC,∴CE=AE,∠ECD=∠A=36°.

解法二:∵DE垂直平分AC,∴AD=CD,∠ADE=∠CDE=90°.

又∵DE=DE,∴△ADE≌△CDE,∠ECD=∠A=36°.15/34②解法一:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°.∵∠ECD=∠A=36°,∴∠BCE=∠ACB-∠ECD=36°,∴∠BEC=180°-36°-72°=72°=∠B,∴BC=EC=5.

解法二:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.16/34(2)(·煙臺(tái))等腰三角形周長(zhǎng)為14,其一邊長(zhǎng)為4,那么,它底邊為_(kāi)__________________.

答案4或6

解析①等腰三角形底邊為4;②等腰三角形兩腰為4時(shí),則底邊等于14-4-4=6.17/34題型二等腰三角形性質(zhì)【例2】如圖,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)D是BC中點(diǎn),且AE=BF,試判斷△DEF形狀.18/34解題示范——規(guī)范步驟,該得分,一分不丟!解:連接AD,在等腰Rt△ABC中,∵AD是中線,∴AD⊥BC,∠DAE=∠BAC=45°,AD=BD.

又∵∠B=∠C=45°,∴∠B=∠DAE.[2分]

在△BDF和△ADE中,∴△BDF≌△ADE(SAS).[4分]∴DF=DE,∠1=∠2.

又∵∠3+∠1=90°,∴∠2+∠3=90°,即∠EDF=90°.∴△DEF也是等腰直角三角形.[6分]19/34探究提升作等腰三角形底邊中線,結(jié)構(gòu)等腰三角形“三線合一”基本圖形,是常見(jiàn)輔助線作法之一.20/34知能遷移2已知:如圖,D是等腰△ABC底邊BC上一點(diǎn),它到兩腰AB、AC距離分別為DE、DF.當(dāng)D點(diǎn)在什么位置時(shí),DE=DF?并加以證實(shí).21/34解當(dāng)點(diǎn)D在BC中點(diǎn)時(shí),DE=DF.∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.∵點(diǎn)D是BC中點(diǎn),∴BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.22/34題型三等邊三角形【例3】

(1)已知:如圖,P、Q是△ABC邊BC上兩點(diǎn),且BP=PQ=QC=AP=AQ,求∠BAC度數(shù).23/34解∵AP=PQ=AQ,∴△APQ是等邊三角形.∴∠PAQ=60°,∠APQ=60°.∵AP=BP,∴∠B=∠BAP=×60°=30°.

同理:∠C=∠CAQ=30°,∴∠BAC=30°+60°+30°=120°.24/34(2)(·大興安嶺)如圖所表示,已知△ABC和△DCE均是等邊三角形,點(diǎn)B、C、E在同一條直線上,AE與BD交于點(diǎn)

O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接OC、FG,則以下結(jié)論:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.

其中正確結(jié)論個(gè)數(shù)(

)A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

答案D25/34解析由△BCD≌△ACE,可得①AE=BD成立;由△ACG≌△BCF,可得②AG=BF成立;∵△ACG≌△BCF,∴CG=CF,又∠ACD=60°,∴△FCG是等邊三角形,∴∠CFG=60°=∠ACB,∴③FG∥BE成立;過(guò)C畫(huà)CM⊥BD,CN⊥AE,垂足分別是M、N,∵△BCD≌△ACE,∴CM=CN,∴點(diǎn)C在∠BOE角平分線上,OC平分∠BOE,即④∠BOC=∠EOC成立.26/34探究提升在解題過(guò)程中要充分利用等邊三角形特有性質(zhì),每個(gè)角都相等,每條邊都相等,這能夠讓我們輕松找到證實(shí)全等所需條件.27/34知能遷移3如圖,在等邊△ABC中,點(diǎn)D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點(diǎn)F.

(1)求證:AD=CE;

(2)求∠DFC度數(shù).28/34解(1)在等邊△ABC中,

AB=AC,∠BAC=∠CBA=60°,又BD=AE,∴△ABD≌△CAE,∴AD=CE.

(2)∵△ABD≌△CAE,∴∠BAD=∠ECA.∵∠DFC是△AFC外角,∴∠DFC=∠ECA+∠DAC

=∠BAD+∠DAC

=∠BAC=60°.29/34答題規(guī)范考題再現(xiàn)在△ABC中,高AD和高BE相交于H,且BH=AC,求∠ABC度數(shù).學(xué)生作答

解:如圖1,在Rt△BHD和Rt△ACD中,∠C+∠CAD=90°,∠C+∠HBD=90°,∴∠HBD=∠CAD.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論