




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天舟文化2025屆高三畢業(yè)班模擬考試(五)數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.2.集合,,則=()A. B.C. D.3.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.4.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.05.關于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④6.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直7.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.8.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.9.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.10.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為()(注:)A.1624 B.1024 C.1198 D.156011.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.12.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結(jié)論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.14.已知實數(shù)a,b,c滿足,則的最小值是______.15.拋物線上到其焦點距離為5的點有_______個.16.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.18.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.19.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?20.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經(jīng)過點,試判斷函數(shù)的零點個數(shù)并證明.21.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.22.(10分)設,函數(shù).(1)當時,求在內(nèi)的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.2.C【解析】
先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關鍵化簡集合A,B,難度較小.3.A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.4.B【解析】
作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規(guī)劃,是基礎題.5.C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.6.D【解析】
根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關系,還考查了理解辨析的能力,屬于中檔題.7.A【解析】
用排除法,通過函數(shù)圖像的性質(zhì)逐個選項進行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.8.A【解析】
由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.9.D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.10.B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項公式和前項和,利用累加法求得數(shù)列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數(shù)列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查累加法求數(shù)列的通項公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.11.A【解析】
先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.12.B【解析】
設出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設棱長為:2,對于①連結(jié),則,即與不垂直,又,①不正確;對于②,連結(jié),,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結(jié),易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【點睛】本題考查命題的真假的判斷,棱錐的結(jié)構(gòu)特征,直線與平面垂直,直線與直線的位置關系的應用,考查空間想象能力以及邏輯推理能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.14.【解析】
先分離出,應用基本不等式轉(zhuǎn)化為關于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.15.2【解析】
設符合條件的點,由拋物線的定義可得,即可求解.【詳解】設符合條件的點,則,所以符合條件的點有2個.故答案為:2【點睛】本題考查拋物線的定義的應用,考查拋物線的焦半徑.16.【解析】
根據(jù)空間位置關系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導公式的應用,綜合性強,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.18.(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對函數(shù)求導后,利用導數(shù)和單調(diào)性的關系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當時,.解得.當時,解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設,當時,由題意,當時,恒成立.,∴當時,恒成立,單調(diào)遞減.又,∴當時,恒成立,即.∴對于,恒成立.(3)因為.由(2)知,當時,恒成立,即對于,,不存在滿足條件的;當時,對于,,此時.∴,即恒成立,不存在滿足條件的;當時,令,可知與符號相同,當時,,,單調(diào)遞減.∴當時,,即恒成立.綜上,的取值范圍為.點睛:本題主要考查導數(shù)和單調(diào)區(qū)間,導數(shù)與不等式的證明,導數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導數(shù)問題的基本題型,也是基本功,先求定義域,然后求導,要注意通分和因式分解.二、三兩問一個是恒成立問題,一個是存在性問題,要注意取值是最大值還是最小值.19.見解析【解析】
根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€,結(jié)合等比數(shù)列通項公式代入化簡,檢驗是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當時,滿足成立.【點睛】本題考查了等差數(shù)列通項公式的求法,等比數(shù)列通項公式及前n項和公式的應用,遞推公式的簡單應用,補充條件后求參數(shù)的值,屬于中檔題.20.(1)見解析,(2)函數(shù)存在唯一零點.【解析】
(1)首先求出導函數(shù),利用導數(shù)的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據(jù)方程即可求出定點.(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點存在性定理即可求出零點個數(shù).【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點,即函數(shù)存在唯一零點.【點睛】本題考查了導數(shù)的幾何意義、直線過定點、利用導數(shù)研究函數(shù)的單調(diào)性、零點存在性定理,屬于難題.21.(1)①當時,在單調(diào)遞增,②當時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】
(1)先求解導函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關系,再構(gòu)造函數(shù)分析出之間的關系,由此證明出.【詳解】(1),①當時,恒成立,則在單調(diào)遞增②當時,令得,解得,又,∴∴當時,,單調(diào)遞增;當時,,單調(diào)遞減;當時,,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個實數(shù)解,則法一:雙偏移法設,則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設,∴在上單調(diào)遞增,∴,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設計平臺外包合同協(xié)議
- 超大陽臺賣房合同協(xié)議
- 財務監(jiān)管協(xié)議書范本
- 購買亞克力板合同協(xié)議
- 訂單種植紅蘿卜合同協(xié)議
- 購買生豬養(yǎng)殖合同協(xié)議
- 訂貨賠償合同協(xié)議模板
- 資質(zhì)服務合同協(xié)議書范本
- 2025年跨文化交際能力測試卷及答案
- 2025年經(jīng)濟學原理課程考試試卷及答案詳解
- 《紅色詩詞》課件
- 漁業(yè)基礎設施與裝備現(xiàn)代化考核試卷
- 高一生物生物膜的流動鑲嵌模型練習題(含答案)
- 電動扶梯拆除施工方案
- 普法課件新編:2024年統(tǒng)計法詳解
- 鋼筋加工施工技術交底
- 私人向公司借款協(xié)議書
- 婦科一病一品護理匯報
- 電氣工程及其自動化基礎知識單選題100道及答案解析
- GB/T 625-2024化學試劑硫酸
- 《國家的兒子》教案 2023-2024學年高教版(2023)中職語文基礎模塊上冊
評論
0/150
提交評論