




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖南省張家界市高考數(shù)學(xué)試題全練版注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.2.過雙曲線左焦點(diǎn)的直線交的左支于兩點(diǎn),直線(是坐標(biāo)原點(diǎn))交的右支于點(diǎn),若,且,則的離心率是()A. B. C. D.3.已知橢圓的右焦點(diǎn)為F,左頂點(diǎn)為A,點(diǎn)P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.4.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機(jī)變量服從正態(tài)分布(),若,則D.設(shè)是實(shí)數(shù),“”是“”的充分不必要條件5.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.36.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線與異面B.過只有唯一平面與平行C.過點(diǎn)只能作唯一平面與垂直D.過一定能作一平面與垂直7.已知函數(shù),若方程恰有兩個(gè)不同實(shí)根,則正數(shù)m的取值范圍為()A. B.C. D.8.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1009.在平行四邊形中,若則()A. B. C. D.10.雙曲線x2a2A.y=±2x B.y=±3x11.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.12.如圖,四邊形為正方形,延長(zhǎng)至,使得,點(diǎn)在線段上運(yùn)動(dòng).設(shè),則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對(duì)的邊分別為,若,的面積為,則_______,_______.14.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為___________.15.設(shè)O為坐標(biāo)原點(diǎn),,若點(diǎn)B(x,y)滿足,則的最大值是__________.16.若x,y滿足,且y≥?1,則3x+y的最大值_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長(zhǎng)為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點(diǎn),求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.18.(12分)已知.(1)已知關(guān)于的不等式有實(shí)數(shù)解,求的取值范圍;(2)求不等式的解集.19.(12分)設(shè)函數(shù).(1)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.20.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對(duì)的邊分別為,且,求的取值范圍.21.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對(duì)于任意的滿足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對(duì)于任意的正數(shù)n,總有.22.(10分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長(zhǎng)為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對(duì)數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題2.D【解析】
如圖,設(shè)雙曲線的右焦點(diǎn)為,連接并延長(zhǎng)交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點(diǎn)為,連接,連接并延長(zhǎng)交右支于.因?yàn)?,故四邊形為平行四邊形,?又雙曲線為中心對(duì)稱圖形,故.設(shè),則,故,故.因?yàn)闉橹苯侨切危?,解?在中,有,所以.故選:D.【點(diǎn)睛】本題考查雙曲線離心率,注意利用雙曲線的對(duì)稱性(中心對(duì)稱、軸對(duì)稱)以及雙曲線的定義來構(gòu)造關(guān)于的方程,本題屬于難題.3.C【解析】
不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力.4.D【解析】
由特稱命題的否定是全稱命題可判斷選項(xiàng)A;可能相交,可判斷B選項(xiàng);利用正態(tài)分布的性質(zhì)可判斷選項(xiàng)C;或,利用集合間的包含關(guān)系可判斷選項(xiàng)D.【詳解】命題“,”的否定形式是“,”,故A錯(cuò)誤;,,則可能相交,故B錯(cuò)誤;若,則,所以,故,所以C錯(cuò)誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.5.A【解析】
由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.6.D【解析】
根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.7.D【解析】
當(dāng)時(shí),函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個(gè)不同實(shí)根,即函數(shù)和有圖像兩個(gè)交點(diǎn),計(jì)算,,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個(gè)交點(diǎn).,,故,,,,.根據(jù)圖像知:.故選:.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.8.B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.9.C【解析】
由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因?yàn)?
所以
,
,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).10.A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a211.B【解析】
由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.12.C【解析】
以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長(zhǎng)為1,則,,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運(yùn)用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點(diǎn)睛】本題主要考查了運(yùn)用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運(yùn)用公式即可求出答案14.【解析】
點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.15.【解析】,可行域如圖,直線與圓相切時(shí)取最大值,由16.5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因?yàn)樗倪呅螢榱庑?,所?因?yàn)槠矫嫫矫?,平面平面,平面,,所以平?又平面,所以.因?yàn)?,所?因?yàn)?,所以平?因?yàn)榉謩e為,的中點(diǎn),所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過點(diǎn)作,與的延長(zhǎng)線交于點(diǎn),取的中點(diǎn),連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因?yàn)闉槠叫兴倪呅危?,所以平?又因?yàn)?,所以平?因?yàn)?,所以平面平?由(1),得平面,所以平面,所以.因?yàn)?,所以平面,所以是與平面所成角.因?yàn)?,,所以平面,平面,因?yàn)?,所以平面平?所以,,解得.在梯形中,易證,分別以,,的正方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則,,,,,,由,及,得,所以,,.設(shè)平面的一個(gè)法向量為,由得令,得m=(3,1,2)設(shè)平面的一個(gè)法向量為,由得令,得.所以又因?yàn)槎娼鞘氢g角,所以二面角的余弦值是.18.(1);(2).【解析】
(1)依據(jù)能成立問題知,,然后利用絕對(duì)值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點(diǎn)分段法解含有兩個(gè)絕對(duì)值的不等式即可?!驹斀狻恳?yàn)椴坏仁接袑?shí)數(shù)解,所以因?yàn)?,所以故。①?dāng)時(shí),,所以,故②當(dāng)時(shí),,所以,故③當(dāng)時(shí),,所以,故綜上,原不等式的解集為。【點(diǎn)睛】本題主要考查不等式有解問題的解法以及含有兩個(gè)絕對(duì)值的不等式問題的解法,意在考查零點(diǎn)分段法、絕對(duì)值三角不等式和轉(zhuǎn)化思想、分類討論思想的應(yīng)用。19.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對(duì)導(dǎo)數(shù)的符號(hào)有影響,對(duì)參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實(shí)數(shù)的取值范圍的左端點(diǎn).【詳解】解:(1)解:,當(dāng)時(shí),,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因?yàn)椋?,,令,則恒成立,由于,當(dāng)時(shí),,故函數(shù)在上是減函數(shù),所以成立;當(dāng)時(shí),若則,故函數(shù)在上是增函數(shù),即對(duì)時(shí),,與題意不符;綜上,為所求.【點(diǎn)睛】本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個(gè)求函數(shù)的最值的問題,此類題運(yùn)算量較大,轉(zhuǎn)化靈活,解題時(shí)極易因?yàn)樽冃闻c運(yùn)算出錯(cuò),故做題時(shí)要認(rèn)真仔細(xì).20.(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】
(1)運(yùn)用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對(duì)角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 記賬業(yè)務(wù)轉(zhuǎn)讓協(xié)議
- 機(jī)動(dòng)車維修數(shù)據(jù)共享協(xié)議
- 為殘疾人提供的客運(yùn)服務(wù)協(xié)議
- 2025年中醫(yī)心理治療師資格考試試卷及答案
- 2025年英語專業(yè)翻譯資格考試卷及答案
- 2025年生物學(xué)科綜合考試試題及答案
- 2025年全國(guó)語言文字應(yīng)用能力測(cè)試試題及答案
- 2025年大數(shù)據(jù)分析師資格考試試題及答案
- 2025年保定市中考二模歷史試題及答案
- 法律基礎(chǔ)知識(shí)考試題庫及參考答案
- 2024年青海省中考一模語文試題
- 電器安裝維修服務(wù)合同
- 中信證券公司融資融券業(yè)務(wù)方案設(shè)計(jì)
- 2023版煤礦安全管理人員考試題庫及解析
- DBJ04T 289-2020 建筑工程施工安全資料管理標(biāo)準(zhǔn)
- 互聯(lián)網(wǎng)金融(同濟(jì)大學(xué))知到智慧樹章節(jié)測(cè)試課后答案2024年秋同濟(jì)大學(xué)
- 宏觀經(jīng)濟(jì)學(xué)知到智慧樹章節(jié)測(cè)試課后答案2024年秋浙江大學(xué)
- 整體施工勞務(wù)服務(wù)方案
- 2025年貴州盤江精煤股份有限公司招聘筆試參考題庫含答案解析
- 2024年中考數(shù)學(xué)復(fù)習(xí):中點(diǎn)模型專項(xiàng)練習(xí)
- 2025年上半年陜西西安市事業(yè)單位招聘高層次及緊缺特殊專業(yè)人才690人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解-1
評(píng)論
0/150
提交評(píng)論