




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省宜昌市示范高中協(xié)作體2022-2023學(xué)年高三數(shù)學(xué)試題3月聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知分別為雙曲線的左、右焦點(diǎn),過(guò)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為()A. B.4 C.2 D.2.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.63.已知雙曲線,為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.4.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.5.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.6.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.7.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-18.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”這個(gè)問(wèn)題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這位女子每天分別織布多少?根據(jù)上述問(wèn)題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.19.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.410.已知雙曲線的焦距為,過(guò)左焦點(diǎn)作斜率為1的直線交雙曲線的右支于點(diǎn),若線段的中點(diǎn)在圓上,則該雙曲線的離心率為()A. B. C. D.11.函數(shù)的圖象大致是()A. B.C. D.12.設(shè),,,則的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中的系數(shù)為_(kāi)_________(用具體數(shù)據(jù)作答).14.若將函數(shù)的圖象沿軸向右平移個(gè)單位后所得的圖象與的圖象關(guān)于軸對(duì)稱,則的最小值為_(kāi)_______________.15.的展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為_(kāi)________(用數(shù)字作答).16.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點(diǎn)分別為、,且點(diǎn)、與橢圓的上頂點(diǎn)構(gòu)成邊長(zhǎng)為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點(diǎn),且分別與直線和直線相交于點(diǎn)、.試判斷是否為定值,并說(shuō)明理由.18.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過(guò)點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.19.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.20.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計(jì)該產(chǎn)品的每日生產(chǎn)總成本價(jià)格)(單位:萬(wàn)元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本(即生產(chǎn)過(guò)程中一段時(shí)間的總成本對(duì)該段時(shí)間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財(cái)團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.22.(10分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來(lái),從而再由勾股定理建立的關(guān)系.2.B【解析】
利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3.D【解析】
根據(jù),先確定出的長(zhǎng)度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡(jiǎn)后可得到的值,即可求漸近線方程.【詳解】如圖所示:因?yàn)椋?,又因?yàn)?,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線中的長(zhǎng)度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點(diǎn)到漸近線的距離等于虛軸長(zhǎng)度的一半.4.C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.5.A【解析】
首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè),具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1____,__1__,____1.剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會(huì)有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè).故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題6.B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問(wèn)題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常常考慮用拋物線的定義進(jìn)行問(wèn)題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過(guò)余弦定理建立關(guān)系.7.B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.8.B【解析】
將問(wèn)題轉(zhuǎn)化為等比數(shù)列問(wèn)題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問(wèn)題.【詳解】根據(jù)實(shí)際問(wèn)題可以轉(zhuǎn)化為等比數(shù)列問(wèn)題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)椋獾?,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問(wèn)題很有幫助.9.C【解析】
方法一:設(shè),利用拋物線的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫(xiě)出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過(guò)定點(diǎn),過(guò)分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.10.C【解析】
設(shè)線段的中點(diǎn)為,判斷出點(diǎn)的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點(diǎn)為,由于直線的斜率是,而圓,所以.由于是線段的中點(diǎn),所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點(diǎn)睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.11.A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時(shí),,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時(shí),若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯(cuò)誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對(duì)復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.12.A【解析】
選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用二項(xiàng)展開(kāi)式的通項(xiàng)公式可求的系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來(lái)計(jì)算,本題屬于容易題.14.【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對(duì)稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個(gè)單位長(zhǎng)度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對(duì)稱,可得,,,即時(shí),的最小值為.故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對(duì)稱性,屬于基礎(chǔ)題.15.5670【解析】
根據(jù)二項(xiàng)式展開(kāi)的通項(xiàng),可得二項(xiàng)式系數(shù)的最大項(xiàng),可求得其系數(shù).【詳解】二項(xiàng)展開(kāi)式一共有項(xiàng),所以由二項(xiàng)式系數(shù)的性質(zhì)可知二項(xiàng)式系數(shù)最大的項(xiàng)為第5項(xiàng),系數(shù)為.故答案為:5670【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式的應(yīng)用,由通項(xiàng)公式求二項(xiàng)式系數(shù),屬于中檔題.16.1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因?yàn)橹本€與橢圓相切,這有一個(gè)交點(diǎn),聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因?yàn)橹本€分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因?yàn)?所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點(diǎn)睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運(yùn)用,考查橢圓的定值問(wèn)題,考查計(jì)算能力和轉(zhuǎn)化思想,是中檔題.18.(1)見(jiàn)解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,利用韋達(dá)定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結(jié)果.試題解析:(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個(gè)交點(diǎn),因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即19.(1)為增區(qū)間;為減區(qū)間.見(jiàn)解析(2)見(jiàn)解析【解析】
(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理判斷出有唯一零點(diǎn).(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過(guò)證明,證得成立.【詳解】(1)∵函數(shù)的定義域?yàn)?,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個(gè)零點(diǎn):∵,所以函數(shù)在區(qū)間內(nèi)有零點(diǎn),∵,函數(shù)在區(qū)間上沒(méi)有零點(diǎn),故函數(shù)只有一個(gè)零點(diǎn).(2)證明:函數(shù),則當(dāng)時(shí),,不符合題意;當(dāng)時(shí),令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個(gè)零點(diǎn),即,所以,且,即兩邊取自然對(duì)數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20.(1)證明見(jiàn)解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項(xiàng)公式.然后利用累加法求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡(jiǎn)單智商測(cè)試題及答案
- 廣告設(shè)計(jì)與受眾參與度考核試題及答案
- 砼檢測(cè)試題及答案
- 新環(huán)境保護(hù)試題及答案
- 幼兒美術(shù)考試題及答案
- 廚師招聘考試試題及答案
- 初中面試政治試題及答案
- 廣告設(shè)計(jì)師考試中的關(guān)鍵技能解析試題及答案
- 甲卷化學(xué)卷試題及答案
- 助理廣告師考試核心知識(shí)回顧試題及答案
- 園丁與木匠讀書(shū)分享
- 1例腦出血術(shù)后并顱內(nèi)感染患者的個(gè)案護(hù)理
- 模擬法庭的劇本
- 2024年重慶市普通高中學(xué)業(yè)水平選擇性考試高考模擬調(diào)研卷(一)化學(xué)試題(含答案解析)
- 《發(fā)酵工程原理及技術(shù)》期末試題C及答案
- 保險(xiǎn)行業(yè)保險(xiǎn)理賠風(fēng)險(xiǎn)管理方案
- 外研版英語(yǔ)三年級(jí)下冊(cè)期中測(cè)試卷 (4)及答案
- 中國(guó)書(shū)法史學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 企業(yè)社會(huì)責(zé)任與顧客滿意
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 沉浸式學(xué)習(xí)讓你學(xué)習(xí)更高效課件高二下學(xué)期高效學(xué)習(xí)主題班會(huì)
評(píng)論
0/150
提交評(píng)論