




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河北省中原名校高三下學(xué)期起點調(diào)研測試數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.2.已知集合,,則=()A. B. C. D.3.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④4.若向量,則()A.30 B.31 C.32 D.335.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.6.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.37.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.58.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+19.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.10.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.11.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.12.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.14.設(shè)定義域為的函數(shù)滿足,則不等式的解集為__________.15.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標(biāo)準(zhǔn)方程為______.16.函數(shù)的定義域為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當(dāng)直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標(biāo)為(1)求橢圓的方程;(2)點為內(nèi)一點,為坐標(biāo)原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.19.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個零點.20.(12分)在中,角的對邊分別為,且.(1)求角的大?。唬?)已知外接圓半徑,求的周長.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進行求解即可.【詳解】當(dāng)時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.2.C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學(xué)生的計算能力.3.D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當(dāng),則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.4.C【解析】
先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標(biāo)運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.5.A【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當(dāng)時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.6.C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識進行判斷.(2)當(dāng)一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.7.D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.8.B【解析】
以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學(xué)生的計算能力,是中檔題.9.A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.10.A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.11.B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.12.C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.14.【解析】
根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】設(shè)F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.15.【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運用,屬于中檔題.16.【解析】
對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.18.(1);(2)或【解析】
(1)由橢圓的定義可知,焦點三角形的周長為,從而求出.寫出直線的方程,與橢圓方程聯(lián)立,根據(jù)交點橫坐標(biāo)為,求出和,從而寫出橢圓的方程;(2)設(shè)出P、Q兩點坐標(biāo),由可知點為的重心,根據(jù)重心坐標(biāo)公式可將點用P、Q兩點坐標(biāo)來表示.由點在圓O上,知點M的坐標(biāo)滿足圓O的方程,得式.為直線l與橢圓的兩個交點,用韋達定理表示,將其代入方程,再利用求得的范圍,最終求出實數(shù)的取值范圍.【詳解】解:(1)由題意知.,直線的方程為∵直線與橢圓的另一個交點的橫坐標(biāo)為解得或(舍去),∴橢圓的方程為(2)設(shè).∴點為的重心,∵點在圓上,由得,代入方程,得,即由得解得.或【點睛】本題考查了橢圓的焦點三角形的周長,標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系,其中重心坐標(biāo)公式、韋達定理的應(yīng)用是關(guān)鍵.考查了學(xué)生的運算能力,屬于較難的題.19.見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.20.(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.21.(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)在點建立空間直角坐標(biāo)系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因為,所以,所以,所以,又,所以平面.因為平面,所以平面平面.(Ⅱ)如圖,以點為原點,分別為軸、軸、軸正方向,建立空間直角坐標(biāo)系,則.設(shè),則取,則為面法向量.設(shè)為面的法向量,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國公民健康素養(yǎng)66條解析-培訓(xùn)課件
- 廣西來賓市本年度(2025)小學(xué)一年級數(shù)學(xué)部編版能力評測((上下)學(xué)期)試卷及答案
- 2025-2030年中國數(shù)控電火花機床市場深度調(diào)研及投資潛力研究報告
- 中醫(yī)內(nèi)科學(xué)引言課件
- 叉車司機五級模擬題及參考答案
- 草坪建植與養(yǎng)護試題庫(附參考答案)
- 安徽省合肥市普通高中六校聯(lián)盟2024-2025學(xué)年高一下學(xué)期4月期中英語試題(原卷版+解析版)
- 航空飛行教具研究考核試卷
- 橡膠制品在太陽能設(shè)備中的功能考核試卷
- 硬件設(shè)計中的用戶體驗UX考量考核試卷
- 個人理財-形考作業(yè)3(第6-7章)-國開(ZJ)-參考資料
- 2024年上??瓦\駕駛員從業(yè)資格證
- 人教版小學(xué)數(shù)學(xué)五年級下冊《分?jǐn)?shù)加減混合運算》教學(xué)設(shè)計
- 環(huán)保材料使用管理規(guī)定
- 化學(xué)反應(yīng)釜操作技能考核試卷
- 高中物理必修二《動能和動能定理》典型題練習(xí)(含答案)
- 《公路橋涵施工技術(shù)規(guī)范》JTGT3650-2020
- 檢驗科儀器故障應(yīng)急預(yù)案
- 起重機的維護保養(yǎng)要求與月度、年度檢查記錄表
- MOOC 國際學(xué)術(shù)交流英語-哈爾濱工業(yè)大學(xué) 中國大學(xué)慕課答案
- 宋元時期科技文化成就
評論
0/150
提交評論