




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于自動(dòng)駕駛的未來(lái)交通與新型電力系統(tǒng)協(xié)同PowerandTransportSynergyDrivenbyAutonomousElectricVehicles
HongcaiZhang
AssistantProfessor
StateKeyLabofInternetofThingsforSmartCity
uM澳大
UniversityofMacau
Oct15,2024
2
Content
Background&motivation
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
山
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
EVsaredominatingfuturetransportationsystems
·EVstockhashit21Mandsalessharehasrisento30%inChinabytheendof
2023(over40%in2024)
Transportationnetwork
*Datasource:IEA,"GlobalEVOutlook2023,"2024.
growing
EV
charging
Impactof
load-aHainanexample
·EVchargingloadatmidnighthasreached450MW,witharapidincreaserateof75MW/min,significantlyhigherthanotherpeakperiods
·By2025,chargingloadcouldriseto800-1,000MW,furtherstressingthegridand
compromisingsystemstability
TimeofDay(15-minuteintervals)
Hainanchargingloadheatmap
AveragedailyEVchargingloadprofilesperstationinHainan
EVsasmobileenergystorageforpowersystem
·EVscomeinvarioustypeswithheterogeneousofworkingasmobileenergystoragetointeract
Small
Medium-
Large
Taxi(50-100kWh)
Private(50-100kWh)
Bus(120-300kWh)
Truck(130-180kWh)
DumperTruck(≥300kWh)Emergency(≥300kWh)
characteristics,butallarecapablewithpowersystem
Onemonth's
≈electricityconsumption
foraresident
Twoweeks'
≈electricityconsumption
forafamily
Oneweek's
≈electricityconsumption
forasix-storyapartment
5
Eraofautonomouselectricvehicles
·Globalautonomousvehiclemarketsizemayexceed2200billiondollarsby2023
·Over1kdesignmodelsforelectricverticaltake-offandlandingaircraftworldwidein2024,andalreadycommercializedinthedeliverybusiness
Globalautonomousvehiclemarketsize(billionUSdollars)
NumberofworldeVTOLaircraftdirectoryentries
*Datasource:STATISTA,"Sizeoftheglobalautonomousvehiclemarketin2021and2022,withaforecastthrough2030",2023.
**Datasource:VerticalFlightSociety,"WorldeVTOLAircraftDirectory",2024.
6
7
AutonomousEVswillstrengthpower&transportsynergy
·Fuelcostisthemajoroperationcost(timeisnotexpensive)
·Scheduleddriving&parkingbehaviors(nodrivertomakedecisions)
Operationscostsbreakdownforride-
hailingservices
■ICEV■AEV
AutonomousEVshavestrongermotivationtodetourforcheaperelectricity
Note:fuelefficiency0.32kWh/mileforAEVs,and30mi/gallonforICEVs;gasprice3.3$/gallon;averagedrivingspeed30mile/hour.
ResearchProblems
Planning
HowtooptimizefleetsizeandchargingsystemsforautonomousEVs?
Pricing
Howtodesignrouting&pricingforEVstoboostrenewableintegration?
Scheduling
HowcanautonomousEVsserveasmobilestoragetostrengthengridresilience?
凸
B
Transmissionnetwork
Large
曲
田
Commercialusers
Distributionrenewables
industrialusers
Centralized
windandPV
generationCharging
stations
Householdusers
Energystorage
乃
Chargingstations
3Charging.3y
Discharging
Electric
cars
和
Lo-
Electrictrucks
Electricbuses
向◎-◎
Electric
motorcycles
SmartV2Gservices8
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
Fleetsizing&charginginfrastructureplanningforurban-scaleshared-useautonomousEVs
·Problemstatement:Howshared-useautonomousEVcompetewithtraditionalvehicles?
●Objective
◆Fleetsize
◆Charginginfrastructure
●Constraints
◆Mobilitydemands
◆AEVdrivingrange
●Techno-economicanalysis
◆Vehiclebatterycapacity
◆Chargerpower
◆Societaltransportationsystemimpact
·H.Zhang,C.J.R.Sheppard,T.E.Lipman,andS.J.Moura,"JointFleetSizingandChargingSystemPlanningforAutonomousElectricVehicles,"IEEETransactionsonIntelligentTransportationSystems,vol.21,no.11,pp.4725-4738,November2020.DOI:10.1109/TITS.2019.2946152
·T.Zengs,H.Zhang.S.J.Moura,andzM.Shen,"EonomicandEnvronmentalBeneftsofAutomatedElecthicvehicleRide-HaingServicesinNewYorko
City,"ScientitIcReports,vOl.14,p.4180,2024.DOI:10.1038/S41598-024-54495-x
期
Starttime
EndtimeStarttime
a
b
Methodology-vehicleshareabilitynetwork
·Vehicle-shareabilitynetwork(VSN)*
·Adoptdirectedacyclicgraphtodescriberelationshipsbetweentrips
·Describefleetsizeproblemasaminimumpathcoveringproblem
·Minimumpathcoveringproblemcanbesolvedasamaximummatchingproblem
-
Endtime
Starttime
EndtimeStarttime
Starttimek
Endtime
自
a
b
g
1
h
m
i
n
f
e
C
C
d
Time
EndtimeStarttime
k
j
h
g
d
Endtime
n
m
i
f
e
Time
DirectedacyclicgraphMinimumpathcover
11
*M.M.Vazifeh,P.Santi,G.Resta,S.H.Strogatz,andC.Ratti,"Addressingtheminimumfleetprobleminon-demandurbanmobility,"Nature,vol.557,no.7706,pp.534-538,2018.
12
Methodology-vehicleshareabilitynetworkwithEVcharging
·Describechargingrangeconstraintsbyidentifyingchargingbehaviorsand
reconstructingvehicleshareabilitynetwork
k
k
:
j
n
n
m
a
m
a
I
b
h
i
g
h
b+g+ch
f
ed
C
f
e
c+d+ch
Currenttime=t
Time
Time
Currenttime=
AnewVSNgraph
chargingevents
Identifyfirst
Methodology-iterativealgorithmwithpolynomialcomplexity
·Aniterativealgorithmwithcomplexity0(TEN2)
Precomputednode-nodehourlytimematrix-NYCTLCdata
Constructroadnetwork,calculateroadODtravelingtime
VSNeraphl
Combinetripsbeforethe
earliestchargingeventforall
othertripchains
Considersecondary
ConstructVehicle-Shareabilitynetwork(directedacyclicgraph)
trafficspeedimpact
becauseofvehicle
automation
Identifytripsand
reconstructvehicle
sharablegraph
Linktravel
timeupdate
Combinetripsbeforethefirstchargingeventforeachtripchainwithachargingevent
ConstructbipartitegraphMaximummatching
Secondary
Addchargingevents
impact
Enumerateeverypathidentifiedupdated
Yes
dispatchtocharge
No,butlargedowntime
Rangeviolated?INo
ConvergenceCriteria?
Yes
13
Outputresults
Experiments&insightsinNewYorkCitycase
·NewYorkCity:Totaltrip485,000trips/day
·Fleetsize13437(real),8100(proposed,40%reduction)
·FleetsizewithEVcharging9,517(15%increasebecauseofdowntime)
Autonomousconventionalvehicle(AV)tleet
operationstatusacrossa7-dayweekInfrastructureplanninginNYC14
Experiments&insightsinNewYorkCitycase
·Longerdrivingrange&higherchargerpowermaynotbeeconomicsolution
Battery
(a)Fleetpurchasecosts.
0
Battery
(c)Investmentcosts
Battery
(b)Infrastructureplacementcosts.
Battery
(d)Operationalcosts
(e)Totalcosts
·AnAEVfleetof(50kW,50kWh)wasthemostcost-effectivesolution
·Largebatteryleadstohighinvestmentandoperationcosts
·Highchargingpowerenhancesvehicle
utilization,buthasmarginaleconomic
benefit
15
Experiments&insightsinNewYorkCitycase
·Automationleadsto45%VMTreduction,and45%reductiononCO2andPM2.5emissions(managedICEVvsunmanagedICEV)
·Electrificationleadsto84%reductiononCO2(EVvsICEV)
·Electrificationandautomationsaveover90%CO2emissions(AEVvsICEV)
Density
CarbonemissionscomparingmanagedorunmanagedAEVandICEV
Density
Emissions(kgPM2.5)
PM2.5emissionscomparingmanagedor
unmanagedAEVandICEV16
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromoterenewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
17
Intercityscenario:RoutingautonomousEVstopromoteintegrationofrenewablegeneration
·Problemstatement:StrategicEVfleetrouting&chargingoncoupledpower&transportationnetworks
oWithpowernetwork:EVsmaydetourtoconsumecheaperelectricity-choose
cost-minimizingpaths
Withoutpowernetwork:EVstrytosave
time-choosetheshortestpaths
·H.Zhang,Z.Hu,andY.Song,"PowerandTransportNexus:RoutingElectricVehiclesGrid,vol.11,no.4,pp.3291-3301,July2020.DOl:10.1109/TSG.2020.2967082|
submittedtoIEEETransactionsonEnergyMarket,PolicyandRegulation,2024.
·L.Pan,H.Zhang,andY.Xu,"OptimalPricingofElectricVehicleChargingonCoupled
Powernetwork
豐
5+
Transportationnetwork
toPromoteRenewablePowerIntegration,"IEEETransactionsonSmartPower-TransportationNetworkbasedonGeneralizedSensitivityAnalysis1"8
Method:optimizationmodel
·OptimizeautonomousEVflowtominimizeoperationalcosts(quadratic)
·Constraints
·ACpowerflow(Secondordercone)
·Coupledconstraints(Linear)
·Drivingrange(expandednetwork)(Linear)
Large-scale(maydriveonanypaths)
·Pathflowconstraints
19
=B?F,RequireEVsonlychooselimitedpaths
Method:a
column-generation
likealgorithm
·Iterativealgorithmbasedongeneralizedlocationalmarginalprices
Adoptgeneralizednodalelectricitypricesto
estimatetotaldriving
costs(time&electricity)
Initializepathset(shortestpath)foreachODpair
SolvethePEVroutingproblem
Solvepowerflow&calculate
generalizednodalelectricityprices
Identifyminimum-costpathfor
eachODpair
EVcanchangepathtoreducecosts?
No
Outputsolution
Remark:Thescaleoftheidentifiedpathsetismuchsmallerthanarcset;Thealgorithmconvergesinafinitenumberofiterations
Addthenewpathtotheset
Yes
Adoptshortestpath
algorithmtoidentifycost-minimizingpaths
*F.He,Y.Yin,andS.Lawphongpanich,Transp.Res.PartBMethodol.,2014.
20
Experiments&insightsonaninterconnectedpower&transportationnetwork
·Results-distributionofautonomousEV
Trafficflowdistribution(beforerouting)
trafficflow
Trafficflowdistribution(afterrouting)
21
22
Experiments&insightsonaninterconnectedpower&transportationnetwork
·Results-operationcosts(assumeonedriverinonecar)
Significantoperationcostsreduction(-20%)withmilddetour
Powergenerationandpurchase(MWh)Fuelingcosts(k$/h)
CaseElectricitypurchaseConventionalDGRenewableDGElectricityEmissionTotall
10.371.14105.37
110.21
Deourtime8.83
0.447.19
0-22.61
0.00422.56
Chargi3gtime
6.45
6.36
6.36
0.0990.012
0.66
0.66
2.370.29
15.58
15.53
6.050.86
5.45
0.64
94.65
113.98
1
2
3
4
一
Muchcleanerenergyconsumptionconsideringpower-transportnexus
Case
Electricitypurchase
(MWh)
ConventionalDG(MWh)Bus5
Renewable
DG(MWh)
Averagerenewable
Bus9
Bus10
Bus11
Bus13
powercurtailment(%)
1
10.36
6.05
21.51
24.11
21.75
27.27
21.13
2
1.14
0.86
27.69
30.0
26.28
30.0
5.03
23
Experiments&insightsonaninterconnectedpower&transportationnetwork
·BenefitsofroutingautonomousEVsaremoresignificantwith
·Morecongestedpowernetwork
·Lowerper-unitdrivingtimecost(autonomousvehicles!)
150%per-unittimeco
%
Openquestion:trade-offbetweendeliverytime&operationalcosts?
Intracityscenario:Pricingofurban-scaleautonomousEVcharging
·Problemstatement:Chargingserviceprovidersstrategicallypriceservicesconsideringfactors:
oEVs'routing&chargingbehaviorsareaffectedbybothchargingpricesand
congestionconditions
0EVs'routing&chargingbehaviorsinturnaffecteconomicoperationof
interconnectednetworks
oPricecompetitionexistsincharging
servicemarket
Powernetwork
豐
Transportationnetwork
25
Method:optimizationmodel
·Optimizechargingpricetomaximizechargingservices'profit(Bilinear)
·Constraints:Chargimaxtcan
·Pricingboundconstraints(Linear)
·Transportationflowconservationconstraints(Linear)
·Time-latencyconstraints(Powercone)
·Userequilibriumconstraint(Complementaryconstraints)
0≤f⊥v-u≥0Large-scale(equaltopathsetsize)
PathflowPathcostLowestpathcost
Method:gradientdescentalgorithm
·Decomposetheoriginalproblemintotwoconvexsub-problems(bilinearand
complementaryconstraintsareeliminated)
·Approximatethegradientaxev/aλoftheuserequilibriumsub-problem
·Solvetheproblemiterativelywithgradients
λ
User
equilibrium
a
Proposedmethod
Exponentialtime
complexity
Polynomialtime
complexity
User
lequilibrium
Originalmodel
Pricingproblem
Pricingproblem
27
Experiments-Algorithmicperformanceinlargenetworks
·Proposedmethodisabout50timesNETWORKCONFIGURATION
Network
OD
Node
Arc
FCS
EasternMassachusetts
1113
74
258
41
Winnipeg
1373
1057
2535
97
fasterthanconventionalmethod
·Solutiontimeismoresteadilyincreasing(Polynomialcomplexity)
·Capabletosolveurbanscalenetworks
ALGORITHMPERFORMANCEINWINNIPEG
Method
Pathsetsize
3996567874979200
MP
Profit($)
Solutiontime(s)
GDGSA
Profit($)
Solutiontime(s)
1941.7-2238.2-2270.6_2374.3
172.6375.8432.4493.5
ALGORITHMPERFORMANCEINEASTERNMASSACHUSETTS
set
size
2775
3182
4039
6085
Path
Method
MP
Profit($)
Solutiontime(S)
1410.2216.4
1443.1641.6
1543.51570.1
Profit($)
Solutiontime(s)
1473.9
144.6
1421.3
70.8
1473.6
134.5
1464.1102.9
GDGSA
MP:mathematicalprogramming
GDGSA:proposedmethod“-”:over7200seconds
28
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
AutonomousEVsasmobilestoragesystemstoenhancepowersystemresilience
·Problemstatement:StrategicoperationofautonomousEVsincoupledpower&transportationnetworkstoenhancepowersystemresilience
Time
oPre-hazard:howtomaximizereservesupplyconsideringEVs'spatial-temporalcharacteristics?
oOn-hazard:howtomitigatesystemperformancelossconsideringthedynamiceffectsofhazard?
oPost-hazard:howtorestoresystemperformanceconsideringthedamagedpower&transportationnetworks?
·L.d,."ZIg,.ia,.i,"iiolelreiteiiioll:e13InectedPower-TransportationSystemUnderNaturalg
·L.Kong,H.Zhang,W.Li,H.Bai,andN.Dai,"Spatial-temporalSchedulingofElectricBusFleetinPower-TransportationCoupledNetwork,"IEEETransactionsonTransportationElectrification,vol.9,no.2,pp2969-2982,2023.DOI:10.1109/TTE.2022.3214335
Method:optimization
model
·OptimizeEVandpowernetworktomaximizetherestorationrevenue max[-CA+E(Rpe-cperD]
CAllo=COppo+CChg,pre-Rs
cOper,u=cGen,w+cChg,post-RS,
Pre-allocationcostOperationrevenueOperationcost
·Constraints
·ACpowerflow(Secondordercone)
·EVlocationconstraints(Bilinear)
·EVpowerandenergyconstraints(Integer)
·Hurricane-induceddamagemodel
CumulativedamagemodelofpowertowerPiece-wiseroaddamagemodel30
Experiments-restoredtopologyand
·UtilizingautonomousEVscansignificantly
restoredpowersupplyafterhazards
Restoredpowernetworktopologyundercase1
(proposed)and4(withoutEVs)
powersupply
increasetherestoredareaand
Time/h
Totalsuppliedowerprofilesatbuses23and30underdifferentcases
33
Experiments-revenue
·BenefitofautonomousEVs'participationinrestoration:
·Case1(Proposedmethod)hasasignificantrevenueincrease(369.53%)thanCase4(Benchmark)
·BenefitofspatialschedulingofautonomousEVs:
·Case1(spatial-temporalscheduling)hasmorerestorationrevenue(31.75%)thanCase2(onlytemporalscheduling),whichoffsetsextratripenergycost
Case
Costduringpre-hazardperiod
Costduringrestorationperiod
Costduringpost-hazardperiod
Restoration
revenue
PTCN'stotalrevenue
EVs'
charging
EVs'
opportunity
EVs'
re-dispatchtripenergy
DGs'
generation
EVs'energyrestoration
1
-2,715.85
-6,000.00
-158.12
-4,291.44
-3,533.78
61,059.40
44,518.34L
2
-2,843.49
-6,000.00
N/A
-4,833.00
-3,357.76
46,343.49
29,309.24I
3
-3,546.84
-6,000.00
N/A
-5,895.45
-4,535.41
38,741.24
18,763.54|
4
N/A
N/A
N/A
-6,628.50
N/A
16,110.00
9,481.50
34
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
山
Summary
35
Summary
·Synergybetweenpowerandtransportationsystemsisamajorfeatureof
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025餐飲聯(lián)盟經(jīng)營(yíng)合同范本
- 2025電商企業(yè)勞動(dòng)合同
- 2025油田合作開發(fā)協(xié)議合同范本
- 2025企業(yè)合同管理中風(fēng)險(xiǎn)防范的關(guān)鍵作用分析
- 2025標(biāo)準(zhǔn)產(chǎn)品買賣合同模板
- 2025購(gòu)銷合同范本內(nèi)容
- 英語(yǔ)學(xué)習(xí)革新之道
- 2025技術(shù)服務(wù)合同范本及樣式
- 2025設(shè)備抵押借款合同樣本
- 安全教育小學(xué)
- 租電動(dòng)車電子合同協(xié)議
- 福建省漳州地區(qū)校聯(lián)考2024-2025學(xué)年七年級(jí)下學(xué)期期中考試語(yǔ)文試卷(含答案)
- 2025年便利店店員勞動(dòng)合同
- GB/T 196-2025普通螺紋基本尺寸
- 2025年陜西省漢中市寧強(qiáng)縣中考一模道德與法治試題(含答案)
- 工地分紅合同協(xié)議
- 變配電工多選試題及答案
- 零售業(yè)智能轉(zhuǎn)型:DeepSeek驅(qū)動(dòng)的消費(fèi)行為分析與推選系統(tǒng)
- 招商引資知識(shí)培訓(xùn)課件
- 2025-2030中國(guó)菊粉提取物行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 商務(wù)英語(yǔ)中的語(yǔ)用失誤分析論文
評(píng)論
0/150
提交評(píng)論