




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)桂林信息科技學(xué)院
《實(shí)時(shí)渲染技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、想象一個(gè)圖像分類的競(jìng)賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測(cè)結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高2、在進(jìn)行深度學(xué)習(xí)模型的訓(xùn)練時(shí),優(yōu)化算法對(duì)模型的收斂速度和性能有重要影響。假設(shè)我們正在訓(xùn)練一個(gè)多層感知機(jī)(MLP)模型。以下關(guān)于優(yōu)化算法的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)梯度下降(SGD)算法是一種常用的優(yōu)化算法,通過不斷調(diào)整模型參數(shù)來最小化損失函數(shù)B.動(dòng)量(Momentum)方法可以加速SGD的收斂,減少震蕩C.Adagrad算法根據(jù)每個(gè)參數(shù)的歷史梯度自適應(yīng)地調(diào)整學(xué)習(xí)率,對(duì)稀疏特征效果較好D.所有的優(yōu)化算法在任何情況下都能使模型快速收斂到最優(yōu)解,不需要根據(jù)模型和數(shù)據(jù)特點(diǎn)進(jìn)行選擇3、無監(jiān)督學(xué)習(xí)算法主要包括聚類和降維等方法。以下關(guān)于無監(jiān)督學(xué)習(xí)算法的說法中,錯(cuò)誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無監(jiān)督學(xué)習(xí)算法的說法錯(cuò)誤的是()A.K均值聚類算法需要預(yù)先指定聚類的個(gè)數(shù)K,并且對(duì)初始值比較敏感B.層次聚類算法可以生成樹形結(jié)構(gòu)的聚類結(jié)果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學(xué)習(xí)算法不需要任何先驗(yàn)知識(shí),完全由數(shù)據(jù)本身驅(qū)動(dòng)4、假設(shè)要開發(fā)一個(gè)疾病診斷的輔助系統(tǒng),能夠根據(jù)患者的醫(yī)學(xué)影像(如X光、CT等)和臨床數(shù)據(jù)做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡(jiǎn)單平均多個(gè)模型的預(yù)測(cè)結(jié)果,計(jì)算簡(jiǎn)單,但可能無法充分利用各個(gè)模型的優(yōu)勢(shì)B.基于加權(quán)平均的融合,根據(jù)模型的性能或重要性分配權(quán)重,但權(quán)重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個(gè)模型的輸出作為新的特征輸入到一個(gè)元模型中進(jìn)行融合,但可能存在過擬合風(fēng)險(xiǎn)D.基于注意力機(jī)制的融合,動(dòng)態(tài)地根據(jù)輸入數(shù)據(jù)為不同模型分配權(quán)重,能夠更好地適應(yīng)不同情況,但實(shí)現(xiàn)較復(fù)雜5、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過程中,損失函數(shù)的值一直沒有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過高B.模型過于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能6、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個(gè)問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效7、假設(shè)正在研究一個(gè)醫(yī)療圖像診斷問題,需要對(duì)腫瘤進(jìn)行分類。由于醫(yī)療數(shù)據(jù)的獲取較為困難,數(shù)據(jù)集規(guī)模較小。在這種情況下,以下哪種技術(shù)可能有助于提高模型的性能?()A.使用大規(guī)模的預(yù)訓(xùn)練模型,并在小數(shù)據(jù)集上進(jìn)行微調(diào)B.增加模型的層數(shù)和參數(shù)數(shù)量,提高模型的復(fù)雜度C.減少特征數(shù)量,簡(jiǎn)化模型結(jié)構(gòu)D.不進(jìn)行任何特殊處理,直接使用傳統(tǒng)機(jī)器學(xué)習(xí)算法8、假設(shè)正在研究一個(gè)自然語言處理任務(wù),需要對(duì)句子進(jìn)行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長(zhǎng)期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點(diǎn)9、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力10、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高11、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類問題,我們需要選擇合適的算法來提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯12、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測(cè)股票價(jià)格的走勢(shì)。以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過對(duì)歷史數(shù)據(jù)的加權(quán)平均和殘差來進(jìn)行預(yù)測(cè)B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長(zhǎng)期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測(cè)任務(wù)D.所有的時(shí)間序列預(yù)測(cè)方法都能準(zhǔn)確地預(yù)測(cè)未來的股票價(jià)格,不受市場(chǎng)不確定性和突發(fā)事件的影響13、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對(duì)短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對(duì)較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計(jì)算復(fù)雜度較高14、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器15、假設(shè)正在開發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)談?wù)勗谕ㄐ蓬I(lǐng)域,機(jī)器學(xué)習(xí)的應(yīng)用。2、(本題5分)說明機(jī)器學(xué)習(xí)在智慧城市中的應(yīng)用。3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)論述在情感分析任務(wù)中,機(jī)器學(xué)習(xí)算法的應(yīng)用和面臨的語言表達(dá)多樣性挑戰(zhàn)。研究如何利用上下文信息和語義理解提高情感分析的準(zhǔn)確性。2、(本題5分)結(jié)合實(shí)際案例,論述機(jī)器學(xué)習(xí)在金融風(fēng)險(xiǎn)預(yù)警中的應(yīng)用。探討風(fēng)險(xiǎn)指標(biāo)構(gòu)建、預(yù)警模型建立、實(shí)時(shí)監(jiān)測(cè)等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。3、(本題5分)論述機(jī)器學(xué)習(xí)中的深度學(xué)習(xí)模型可解釋性研究進(jìn)展。深度學(xué)習(xí)模型的可解釋性一直是研究的熱點(diǎn)問題,分析當(dāng)前的研究進(jìn)展和方法。4、(本題5分)論述機(jī)器學(xué)習(xí)在建筑能源效率優(yōu)化中的應(yīng)用。分析數(shù)據(jù)收集和模型選擇的關(guān)鍵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年市場(chǎng)營(yíng)銷策劃考核試題及答案
- 2025年護(hù)理學(xué)專業(yè)職稱考試試卷及答案
- 2025年外語翻譯證書考試試題及答案
- 2025年農(nóng)村經(jīng)濟(jì)與發(fā)展研究生入學(xué)考試題及答案
- 2025年老年護(hù)理考試試卷及答案信息
- 2025年公共衛(wèi)生與預(yù)防醫(yī)學(xué)試題及答案
- 2025年旅游管理專業(yè)畢業(yè)生考試試題及答案
- 2025年生態(tài)文化建設(shè)考試試題及答案歸納
- 2025年全科醫(yī)生執(zhí)業(yè)考試試卷及答案
- 婚姻忠誠(chéng)保障及子女全面教育培養(yǎng)協(xié)議
- 河南五市2025年高三俄語二模試卷(無答案)
- 2025-2030中國(guó)旅游景區(qū)行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及前景趨勢(shì)與投資發(fā)展研究報(bào)告
- 9.2 歐洲西部課件3-2024-2025學(xué)年七年級(jí)地理下學(xué)期人教版2024
- 2024年山東泰安岱岳區(qū)職業(yè)教育中心招聘筆試真題
- 喝酒受傷賠償協(xié)議書模板
- 2025年廣東廣州市高三二模高考英語試卷試題(含答案詳解)
- 期中考試質(zhì)量分析會(huì)上校長(zhǎng)引用6個(gè)關(guān)鍵詞講話:深耕、融合、賦能、深耕、創(chuàng)新、協(xié)同、堅(jiān)守
- 2025屆高三化學(xué)備考:山東高考模擬練習(xí)-工業(yè)流程61道
- 聯(lián)營(yíng)采購(gòu)合同協(xié)議
- 掛靠法人免責(zé)協(xié)議書
- 碳中和技術(shù)概論全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論