




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2-8函數(shù)的圖象講義
【高考要求】L能夠判斷指定函數(shù)的圖象,也能根據(jù)圖象判斷適合的函數(shù)解析式;
2.會運(yùn)用函數(shù)圖象研究函數(shù)的性質(zhì),解決方程解的個(gè)數(shù)與不等式解的問題.
3.熟悉函數(shù)圖象變換,能根據(jù)圖象變換分析函數(shù)性質(zhì);
【知識總結(jié)】
函數(shù)圖象變換
(一).平移變換
1.把函數(shù)y=K尤)的圖像沿x軸向左平移a個(gè)單位得到函數(shù)y=/(x+a)(a>0)的圖像;
2.把函數(shù)y=/(x)的圖像沿x軸向右平移a個(gè)單位得到函數(shù)y=/(尤-a)(a>0)的圖像;
3.把函數(shù)>=加)的圖像沿y軸向上平移a個(gè)單位得到函數(shù)y=/(x)+a(a>0)的圖像;
4.把函數(shù)尤)的圖像沿y軸向下平移a個(gè)單位得到函數(shù)y=/(尤)-a(a>0)的圖像;
(二).對稱變換
1.函數(shù)自身的對稱
(1)函數(shù)/(x)的圖象關(guān)于x=a對稱=/(a+x)=/(a—x)=y(x)=/(2a—x)=/(2a+x);
(2)若函數(shù)“x)的定義域?yàn)镽,且有<a+x)=/(i>—x),則函數(shù)y=/(x)的圖象關(guān)于直線x=62對稱.
(3)函數(shù)(尤)的圖象關(guān)于(a,0)對稱尤)=C)e/(x)M2a—尤)=0=/(—x)92a+x)=0;
(4)函數(shù)大尤)的圖象關(guān)于點(diǎn)(a,6)成中心對稱+x)/a—尤)=2b^fi2a-x)+fix)=2b
2.兩個(gè)函數(shù)之間的對稱
(1)函數(shù)y=A尤)與函數(shù)g(x)=f(-x)的圖像關(guān)于y軸對稱;
(2)函數(shù)y=/(元)與函數(shù)g(x)=-f(x)的圖像關(guān)于x軸對稱;
(3)函數(shù)y=/(a+x)與g(x)=f(b-x)的圖象關(guān)于直線x=呼對稱;
(4)函數(shù)y=/(x)與g(x)=f(2b-x)的圖象關(guān)于直線x=a對稱;
(5)函數(shù)八彳)與函數(shù)g(x)=—f(—x)的圖像關(guān)于坐標(biāo)原點(diǎn)(0,0)對稱;
(6)函數(shù)y=/(元)與g(x)=2b-f(-x)的圖象關(guān)于點(diǎn)(0,b)對稱;
(7)函數(shù)y=/(x)與g(x)=2b—f(2匚-x)的圖象關(guān)于點(diǎn)(a,b)對稱.
(三).翻折變換
(1)y=|/(x)|的圖像是將函數(shù)/(%)的圖像保留x軸上方的部分不變,將x軸下方的部分關(guān)于x軸對稱翻折上來
得到的(如圖(a)和圖(b))所示
(2)y=/(兇)的圖像是將函數(shù)/(x)的圖像只保留y軸右邊的部分不變,并將右邊的圖像關(guān)于y軸對稱得到函數(shù)
y=/(N)左邊的圖像即函數(shù)y=/(W)是一個(gè)偶函數(shù)(如圖(C)所示).
1.將y=/a)上每一點(diǎn)的縱坐標(biāo)伸長(A>1)或縮短(0<A<1)到原來的A倍得到y(tǒng)=A/U)(A>0).
2.將y=/U)上每一點(diǎn)的橫坐標(biāo)伸長(0<co<1)或縮短(3>1)到原來的工倍得y=f(cox)(o)>0).
Ci)
【常用結(jié)論】
【課前自測】
1.判斷下列結(jié)論是否正確.(請?jiān)诶ㄌ栔写颉癑”或“義”)
⑴函數(shù)>=")|為偶函數(shù).(X)
(2)函數(shù)x)的圖象,可由y=/(—x)的圖象向左平移1個(gè)單位長度得到.(X)
(3)當(dāng)xd(0,+8)時(shí),函數(shù)y=|/(x)|與>=川功的圖象相同.(X)
(4)函數(shù)y=/(x)的圖象關(guān)于y軸對稱即函數(shù)y=/(x)與y=/(—x)的圖象關(guān)于y軸對稱.(X)
2.函數(shù)>=%)與>=k的圖象關(guān)于y軸對稱,再把y=/(x)的圖象向右平移1個(gè)單位長度后得到函數(shù);y=g(x)的圖
象,貝!]g(x)=.
答案:e-x+i;解析:由題意可知元)=葭。
把y=/U)的圖象向右平移1個(gè)單位長度后得到g(x)=e—(廠1)=屋,+1的圖象.
【考點(diǎn)題型】
考點(diǎn)一作函數(shù)的圖象
【方法總結(jié)】函數(shù)圖象的作法
(1)直接法:當(dāng)函數(shù)表達(dá)式是基本函數(shù)或函數(shù)圖象是解析幾何中熟悉的曲線(如圓、橢圓、雙曲線、拋物線的一部
分)時(shí),就可根據(jù)這些函數(shù)或曲線的特征直接作出.
(2)轉(zhuǎn)化法:含有絕對值符號的函數(shù),可去掉絕對值符號,轉(zhuǎn)化為分段函數(shù)來畫圖象.
(3)圖象變換法:若函數(shù)圖象可由某個(gè)基本函數(shù)的圖象經(jīng)過平移、翻折、對稱變換得到,可利用圖象變換作出,
但要注意變換順序.對不能直接找到熟悉的基本函數(shù)的要先變形,并應(yīng)注意平移變換的順序?qū)ψ儞Q單位及解析
式的影響.
2尤一1]
[例1]作出下列函數(shù)的圖象:⑴產(chǎn)=丁;(2)〉=/—2|x|T;(3)y=(w)w;(4)j=|log2(x+1)|.
象,即得函數(shù)2|x|—1的圖象,如圖.
⑶作出y=(1■廠的圖象,保留y=(;『圖象中x>0的部分,加上>=(;),的圖象中尤>0部分關(guān)于y軸的對稱部
(4)將函數(shù)y=log加的圖象向左平移1個(gè)單位,再將x軸下方的部分沿x軸翻折上去,即可得至I函數(shù)y=|log2(x+
1)|的圖象,如圖中實(shí)線部分.
考點(diǎn)二函數(shù)圖象的識別
【方法總結(jié)】識別函數(shù)圖象的方法
(1)直接根據(jù)函數(shù)解析式作出函數(shù)圖象,或者是根據(jù)圖象變換作出函數(shù)的圖象.
(2)間接法篩選錯誤與正確的選項(xiàng)可從如下幾個(gè)方面入手:
①從函數(shù)的定義域判斷圖象的左右位置,從函數(shù)的值域判斷圖象的上下位置;
②從函數(shù)的單調(diào)性判斷圖象的上升、下降趨勢;
③從函數(shù)的奇偶性判斷圖象的對稱性;
④從函數(shù)的周期性判斷圖象的循環(huán)往復(fù);
⑤從特殊點(diǎn)出發(fā)排除不符合要求的選項(xiàng).
⑶求解因動點(diǎn)變化而形成的函數(shù)圖象問題,既可以根據(jù)題意求出函數(shù)解析式后判斷圖象,也可以將動點(diǎn)處于某
特殊位置時(shí)考查圖象的變化特征后作出選擇.
注意:應(yīng)用極限思想來處理,達(dá)到巧解妙算的效果,使解題過程費(fèi)時(shí)少,準(zhǔn)確率高.
[例2]⑴(2024?全國甲卷理?真題T7)函數(shù)+(e"efsiru在區(qū)間[-2.828]的大致圖像為()
答案B解析/(-x)=-^2+(e--et)sin(-^)=-x2+(el-e-')sinA-=/(x),故該函數(shù)為偶函數(shù),可排除A、C,
又/⑴=-l+(eTsinl>T+(eTsi*故可排除D;故選:B.
(2)(2018?全國^)函數(shù)/U)=e9的圖象大致為()
答案B解析e"是奇函數(shù),y=N是偶函數(shù),.\/(x)=—不一是奇函數(shù),圖象關(guān)于原點(diǎn)對稱,排除A
選項(xiàng);當(dāng)x=l時(shí),/(l)=e—:>0,排除D選項(xiàng);又e>2,.*.e—->1,排除C選項(xiàng).故選B.
(3)(2018?浙江)函數(shù)y=2%in2x的圖象可能是()
答案D角翠析由y=2%in2x知函數(shù)的定義域?yàn)镽,令/(x)=2%in2],貝]/(—x)=2L*in(—2x)=-2Wsin2x,丁
y(x)=-/i-x),.?.凡r)為奇函數(shù)..\/(無)的圖象關(guān)于原點(diǎn)對稱,故排除A、B.4>?=2wsin2x=o,解得x=?■(左e
7T
Z),.?.當(dāng)A=1時(shí),x=5,故排除C,選D.
(4)己知函數(shù)/U)的圖象如圖所示,則人元)的解析式可以是()
inivie"11
A.B.fix)=~C.>)=7-1D.f{x)=x~~
人,人人人
iy
——7oV7x
答案A解析由圖象知"x)為奇函數(shù),排除B、C.若方則無一+s時(shí),危)T+OO,排除D.
(5)(多選).已知定義在[-3,3]上的函數(shù)y=f(x)的圖像如圖所示.下述四個(gè)結(jié)論:()
A.函數(shù)y=f(x)的值域?yàn)椋郇D2,2]B.函數(shù)y=f(x)的單調(diào)遞減區(qū)間為[—1,1]
C.函數(shù)y=f(x)僅有兩個(gè)零點(diǎn)D.存在實(shí)數(shù)。滿足f(a)+f(-a)=O
由圖,y=f(x)的最大值大于2,最小值小于2,故值域不為[-2,2],故錯誤;
對B,函數(shù)y=f(x)的單調(diào)遞減區(qū)間為[―1,1],故正確;對C,函數(shù)y=f(x)有三個(gè)零點(diǎn),故錯誤;
對D,f(0)+f(—0)=0成立,故正確;故選:BD
一2x32(—x)32X3.
答案:B;解析::丁=加)=2%+2一中6,6],A-1)-2r+2.——2X+2X—―,汽彳)
2x4^128
是奇函數(shù),排除選項(xiàng)C.當(dāng)x=4時(shí),>=虧戶=-----^G(7,8),排除選項(xiàng)A、D.故選B.
::16+記
2.(2018?全國III)函數(shù)y=—f+r+2的圖象大致為()
答案:D;
所以排除C項(xiàng).故選D.
Y2
3.函數(shù)>=至一ln|x|的圖象大致為(
答案:D;解析:令兀v)=y=R—ln|x|,則八一x)=/(無),故函數(shù)為偶函數(shù),排除選項(xiàng)B;當(dāng)無>0且x-0
時(shí),y—十(?,排除選項(xiàng)A;當(dāng)x=2/時(shí),j=l-ln(2V2)<l-lne=0,排除選項(xiàng)C.故選D.
4(多選).已知二次函數(shù)+c的圖象如下圖所示,則下列說法正確的是()
A.〃>4acB.ac>0C.人<。D.ci-b+c<G
答案:AD;解析:由圖可得“<0,f(0)=c>0,4>0,A=Z>2-4ac>0,f(.-l)=a-b+c<0
所以b>0,ac<0,故選:AD
x2,x>0
5.已知函數(shù)1,g(x)=—fi—x),則函數(shù)g(x)的圖象是()
x<0
答案:D;解析:法一:
題圖選項(xiàng)D中圖象.故選D.
法二:先畫出函數(shù)人))的圖象,如圖1所示,再根據(jù)函數(shù)尤)與一八一x)的圖象關(guān)于坐標(biāo)原點(diǎn)對稱,即可畫出函數(shù)
一/(一尤),即g(x)的圖象,如圖2所示.故選D.
8.若函數(shù)y=/(x)的圖象如圖所示,則函數(shù)>=—y(x+l)的圖象大致為()
答案:C;解析:要想由y=/(x)的圖象得到y(tǒng)=-/(x+l)的圖象,需要先將y=/a)的圖象關(guān)于x軸對稱
得到y(tǒng)=-/(x)的圖象,然后向左平移1個(gè)單位長度得到y(tǒng)=-A無+1)的圖象,根據(jù)上述步驟可知C正確.
考點(diǎn)三利用函數(shù)圖象研究函數(shù)的性質(zhì)
【方法總結(jié)】利用圖象研究函數(shù)性質(zhì)問題的思路
對于已知或解析式易畫出其在給定區(qū)間上圖象的函數(shù),其性質(zhì)常借助圖象研究:
[例3](1)已知函數(shù)"x)=M尤|一2無,則下列結(jié)論正確的是()
A.八x)是偶函數(shù),遞增區(qū)間是(0,+8)B.人尤)是偶函數(shù),遞減區(qū)間是(一8,1)
C.兀0是奇函數(shù),遞減區(qū)間是(一1,1)D./U)是奇函數(shù),遞增區(qū)間是(一8,0)
[了2—2%,x>0,
答案C解析將函數(shù)於)=小|—2x去掉絕對值得'畫出函數(shù)危)的圖象,如圖,
[—x~2x,x<0,
觀察圖象可知,函數(shù)兀0的圖象關(guān)于原點(diǎn)對稱,故函數(shù)兀X)為奇函數(shù),且在(一1,1)上單調(diào)遞減.
2^—1
(2)設(shè)函數(shù)y==p關(guān)于該函數(shù)圖象的命題如下:
①一定存在兩點(diǎn),這兩點(diǎn)的連線平行于x軸;②任意兩點(diǎn)的連線都不平行于y軸;③關(guān)于直線y=x對稱;④關(guān)
于原點(diǎn)中心對稱.其中正確的是()
A.①②B.②③C.③④D.①④
2r—12)+34
答案B解析y=一丁=」2(一Y—~一=2+T,圖象如圖所示,可知②③正確.
%—2x~2x~2
⑶大幻=1042在區(qū)間[徵,4]上的值域?yàn)椋邸?,2],則實(shí)數(shù)小的取值范圍為_________.
——%,+-%+-,%>—1
333
答案[—8,-1]解析作出於)的圖象,當(dāng)爛一1時(shí),段)=/0出(一》單調(diào)遞減,且最小值為八-1)=一1,則
令,。。2(-:)=2,解得%=—8;當(dāng)x>一1時(shí),函數(shù)於)=—¥+++,在(一1,2)上單調(diào)遞增,在[2,+oo)上遞減,
2
則最大值為月2)=2,又/(4)=w<2,/(-1)=-1,故所求實(shí)數(shù)機(jī)的取值范圍為[-8,-1].
考點(diǎn)四利用函數(shù)圖象解決方程根的問題
【方法總結(jié)】利用函數(shù)的圖象解決方程根問題的思路
當(dāng)方程與基本函數(shù)有關(guān)時(shí),可以通過函數(shù)圖象來研究方程的根,方程40=0的根就是函數(shù)式幻圖象與X軸交點(diǎn)
的橫坐標(biāo),方程次x)=g(x)的根就是函數(shù)人x)與g(x)圖象交點(diǎn)的橫坐標(biāo).
[例4](1)已知函數(shù)y(x)=21nx,g(x)=,一4x+5,則方程八%)=且0)的根的個(gè)數(shù)為()
A.0B.1C.2D.3
答案C解析由已知以%)=。-2產(chǎn)+1,得其頂點(diǎn)為(2,1),又12)=21n2£(l,2),可知點(diǎn)(2,1)位于函數(shù)
J(x)=21nx圖象的下方,故函數(shù)危)=21nx的圖象與函數(shù)以防二一一4x+5的圖象有2個(gè)交點(diǎn).
(2)函數(shù)/C%)=ln(x+1)的圖象與函數(shù)g(%)=f—4x+4的圖象的交點(diǎn)個(gè)數(shù)為()
A.0B.1C.2D.3
答案:C;解析:由于函數(shù)4x)=ln(x+l)的圖象是由函數(shù)y=lnx的圖象向左平移1個(gè)單位長度得到的,
函數(shù)g(%)=——4%+4=(x—2)2,故函數(shù)g(x)圖象的對稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,0),開口向上,所以作出1工),
g(%)的圖象如圖所示,故函數(shù)1%)與g(x)的圖象有兩個(gè)交點(diǎn).
(3)已知函數(shù)滿足:①定義域?yàn)镽;②Vx£R,都有危+2)=危);③當(dāng)1,1]時(shí),兀x)=一國+l.則
方程/(%)=/og2國在區(qū)間[-3,5]內(nèi)解的個(gè)數(shù)是()
A.5B.6C.7D.8
答案A解析依題意畫出y=?x)與y=glog2|x|的圖象如圖所示,由圖可知,解的個(gè)數(shù)為5.
(4)(多選).函數(shù)f(x)=(x-2)(x-5)-1有兩個(gè)零點(diǎn)久1,尤2,且/<&下列結(jié)論錯誤的是()
A.f(2)>0B.函數(shù)f(x)在[2,5]上有最小值
C.函數(shù)丫=代*+3)+1的零點(diǎn)為5,8D.久i<2且冷>5
答案:AC;解析:令g(x)=(x-2)(x-5),則f(x)=g(x)-1,
所以函數(shù)f(x)的零點(diǎn)就是函數(shù)g(x)=(x-2)(x-5)與y=1的圖象交點(diǎn)的橫坐標(biāo).
如圖,在同一坐標(biāo)系中作出函數(shù)g(x)與y=1的圖象,兩圖象交點(diǎn)的橫坐標(biāo)分別為.的,%2
A:/⑵=°T=T<°,故A錯誤;
B:因?yàn)間⑶在[2同上有最小值,所以“X)在RS]上也有最小值,故B正確;
C:函數(shù)y=〃尤+3)+1=(尤+1)(了一2),則零點(diǎn)為-1,2,故C錯誤;
D:由圖可知不<2且%>5,故D正確.故選:AC
考點(diǎn)五利用函數(shù)圖象解不等式
【方法總結(jié)】利用函數(shù)圖象求解不等式的思路
當(dāng)不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時(shí),常將不等式問題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問題,從
而利用數(shù)形結(jié)合求解.
[例5](1)設(shè)奇函數(shù)五功在(0,+8)上為增函數(shù),且八1)=0,則不等式?子也<0的解集為()
A.(-1,0)U(l,+oo)B.(-oo,-l)U(0,1)C.(-oo,-1)U(1,+oo)D.(—1,0)U(0,1)
答案D解析因?yàn)槲鍃)為奇函數(shù),所以不等式K—一,二制<0可化為與<0,即狀尤)<0,黃尤)的大致圖象如圖所
示.所以對(無)<0的解集為(-1,0)U(0,1).
(2)如圖,函數(shù)危)的圖象為折線AC8,則不等式7(x)Kog2(x+l)的解集為.
2C/\y=logz(%+l)
-10|2~X
...一y=2,
答案[x\—1<X<1}解析令y=log2(x+1),作出函數(shù)y=log2(x+1)圖象如圖所示.由彳得
-ly=log2(x+l)
w=l,
結(jié)合圖象知不等式加巨log2(尤+1)的解集為{X|-1K1}.
[y=l.-
(3)若犬尤)是周期為4的偶函數(shù),當(dāng)xG[0,2]時(shí),兀c)=x—1,則不等式對(尤)>0在(-1,3)上的解集為()
A.(1,3)B.(-1,1)C.(-1,O)U(1,3)D.(-1,0)U(0,1)
答案C解析作出函數(shù)?x)的圖象如圖所示.當(dāng)xG(—l,0)時(shí),由狀x)>0得xG(—l,0);當(dāng)xe(0,1)時(shí),
由狀x)>0得尤G0;當(dāng)尤e(l,3)時(shí),由燈⑴>0得xe(l,3).故xe(—l,O)U(1,3).
(4)若不等式(x—l)2<logax(a>0,且存1)在尤以1,2)內(nèi)恒成立,則實(shí)數(shù)。的取值范圍為()
A.(1,2]B.(y,l)C.(1,柩D.(y[2,2)
答案A解析要使當(dāng)xG(l,2)時(shí),不等式(無一l)2<logd恒成立,只需函數(shù)>=(無一1)2在(1,2)上的圖象在y
=loga尤的圖象的下方即可.當(dāng)0<°<1時(shí),顯然不成立;當(dāng)。>1時(shí),如圖,要使xG(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政管理與經(jīng)濟(jì)法課程新動向試題及答案
- 行政管理中公共關(guān)系的應(yīng)用現(xiàn)狀試題及答案
- 2025-2030年防偽技術(shù)行業(yè)市場深度分析及競爭格局與投資戰(zhàn)略研究報(bào)告
- 2025-2030年通信導(dǎo)航定向設(shè)備行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資前景研究報(bào)告
- 2025-2030年車用EVA行業(yè)市場發(fā)展分析及投資前景研究報(bào)告
- 2025-2030年起重運(yùn)輸設(shè)備行業(yè)發(fā)展分析及發(fā)展趨勢與投資前景預(yù)測研究報(bào)告
- 2025-2030年課后服務(wù)行業(yè)市場深度調(diào)研及發(fā)展趨勢和投資前景預(yù)測研究報(bào)告
- 2025-2030年肉制品行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報(bào)告
- 2025-2030年紙箱行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報(bào)告
- 2025-2030年磁控健身車產(chǎn)業(yè)市場深度調(diào)研及發(fā)展趨勢與投資戰(zhàn)略研究報(bào)告
- 數(shù)據(jù)中心基礎(chǔ)設(shè)施管理系統(tǒng)DCIM整體方案
- 核電站入廠安全培訓(xùn)課件
- 陜旅版五年級英語上冊句型詞匯知識點(diǎn)總結(jié)
- 漢字構(gòu)字的基本原理和識字教學(xué)模式分析
- 圍術(shù)期過敏反應(yīng)診治的專家共識(全文)
- 2013年俄語專業(yè)四級歷年真題詳解
- 論中學(xué)語文教師美學(xué)素養(yǎng)的培養(yǎng)
- 送貨單ECEL模板
- RouterOS介紹
- 模切檢驗(yàn)標(biāo)準(zhǔn)
- 保潔員工考勤表
評論
0/150
提交評論