




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第2章微積分學(xué)的創(chuàng)始人:德國數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度都是描述物質(zhì)運(yùn)動(dòng)的工具(從微觀上研究函數(shù))導(dǎo)數(shù)與微分導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家Ferma在研究極值問題中提出.英國數(shù)學(xué)家Newton一、引例二、導(dǎo)數(shù)的定義三、導(dǎo)數(shù)的幾何意義四、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系五、單側(cè)導(dǎo)數(shù)第1節(jié)導(dǎo)數(shù)的概念
第2章一、引例1.變速直線運(yùn)動(dòng)的速度設(shè)描述質(zhì)點(diǎn)運(yùn)動(dòng)位置的函數(shù)為則到的平均速度為而在時(shí)刻的瞬時(shí)速度為2.曲線的切線斜率曲線在M
點(diǎn)處的切線割線MN
的極限位置MT(當(dāng)時(shí))割線MN
的斜率切線MT的斜率兩個(gè)問題的共性:瞬時(shí)速度切線斜率所求量為函數(shù)增量與自變量增量之比的極限.類似問題還有:加速度角速度線密度電流強(qiáng)度是速度增量與時(shí)間增量之比的極限是轉(zhuǎn)角增量與時(shí)間增量之比的極限是質(zhì)量增量與長度增量之比的極限是電量增量與時(shí)間增量之比的極限變化率問題二、導(dǎo)數(shù)的定義定義1.
設(shè)函數(shù)在點(diǎn)存在,并稱此極限為記作:即則稱函數(shù)若的某鄰域內(nèi)有定義,在點(diǎn)處可導(dǎo),在點(diǎn)的導(dǎo)數(shù).運(yùn)動(dòng)質(zhì)點(diǎn)的位置函數(shù)在時(shí)刻的瞬時(shí)速度曲線在M
點(diǎn)處的切線斜率不存在,就說函數(shù)在點(diǎn)不可導(dǎo).若也稱在若函數(shù)在開區(qū)間
I
內(nèi)每點(diǎn)都可導(dǎo),此時(shí)導(dǎo)數(shù)值構(gòu)成的新函數(shù)稱為導(dǎo)函數(shù).記作:注意:就稱函數(shù)在
I內(nèi)可導(dǎo).的導(dǎo)數(shù)為無窮大.若極限例1.求函數(shù)(C
為常數(shù))的導(dǎo)數(shù).解:即例2.
求函數(shù)解:說明:對一般冪函數(shù)(為常數(shù))例如,(以后將證明)例3.
求函數(shù)的導(dǎo)數(shù).解:則即類似可證得例4.求函數(shù)的導(dǎo)數(shù).解:
即原式是否可按下述方法作:例5.證明函數(shù)在x=0不可導(dǎo).證:不存在,例6.
設(shè)存在,求極限解:
原式三、導(dǎo)數(shù)的幾何意義曲線在點(diǎn)的切線斜率為若曲線過上升;若曲線過下降;若切線與x軸平行,稱為駐點(diǎn);若切線與
x軸垂直.曲線在點(diǎn)處的切線方程:法線方程:例7.問曲線哪一點(diǎn)有鉛直切線?哪一點(diǎn)處的切線與直線平行?寫出其切線方程.解:令得對應(yīng)則在點(diǎn)(1,1),(–1,–1)處與直線平行的切線方程分別為即故在原點(diǎn)(0,0)有鉛直切線四、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系定理1.證:設(shè)在點(diǎn)x
處可導(dǎo),存在,因此必有其中故所以函數(shù)在點(diǎn)x
連續(xù).注意:
函數(shù)在點(diǎn)x連續(xù),但在該點(diǎn)未必可導(dǎo).反例:在
x=0處連續(xù),
但不可導(dǎo).即在點(diǎn)的某個(gè)右鄰域內(nèi)五、單側(cè)導(dǎo)數(shù)若極限則稱此極限值為在處的右導(dǎo)數(shù),記作即(左)(左)例如,在
x=0處有定義2
.
設(shè)函數(shù)有定義,存在,定理2.函數(shù)在點(diǎn)且存在簡寫為在點(diǎn)處右導(dǎo)數(shù)存在定理3.
函數(shù)在點(diǎn)必右連續(xù).(左)(左)若函數(shù)與都存在,則稱顯然:在閉區(qū)間[a,b]上可導(dǎo)在開區(qū)間
內(nèi)可導(dǎo),在閉區(qū)間
上可導(dǎo).可導(dǎo)的充分必要條件是且內(nèi)容小結(jié)1.導(dǎo)數(shù)的實(shí)質(zhì):3.導(dǎo)數(shù)的幾何意義:4.可導(dǎo)必連續(xù),但連續(xù)不一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)場柴油發(fā)電機(jī)臨時(shí)供電方案設(shè)計(jì)與實(shí)施細(xì)節(jié)
- 機(jī)電養(yǎng)護(hù)監(jiān)理管理辦法
- 生態(tài)文明建設(shè)教育課程體系構(gòu)建與教學(xué)設(shè)計(jì)研究
- 數(shù)字仿真:產(chǎn)品創(chuàng)新加速器技術(shù)探索
- 煤系巷道頂板疊加理論與有效錨固層厚度應(yīng)用研究
- 醫(yī)療集團(tuán)資產(chǎn)管理辦法
- 熱紅外遙感勘探-洞察及研究
- 音樂傳播視角下高職學(xué)生合唱藝術(shù)審美能力培養(yǎng)策略研究
- 全員安全生產(chǎn)責(zé)任制清單模板
- 關(guān)于安全生產(chǎn)會(huì)議的法律規(guī)定
- 事業(yè)單位檔案個(gè)人自傳范文三篇
- 煙草制品購銷員(四級(jí))職業(yè)技能鑒定-理-論-知-識(shí)-試-卷
- 生產(chǎn)現(xiàn)場變化點(diǎn)管理行動(dòng)指南
- 中國古典小說巔峰:四大名著鑒賞學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 模擬電子技術(shù)基礎(chǔ)知到章節(jié)答案智慧樹2023年蘭州石化職業(yè)技術(shù)大學(xué)
- JJF 1915-2021傾角儀校準(zhǔn)規(guī)范
- GA/T 1310-2016法庭科學(xué)筆跡鑒定意見規(guī)范
- 2023年本科招生考試
- 新入職護(hù)士培訓(xùn)考試試題及答案
- 《消防安全技術(shù)實(shí)務(wù)》課本完整版
- 公路工程標(biāo)準(zhǔn)施工監(jiān)理招標(biāo)文件(2018年版)
評(píng)論
0/150
提交評(píng)論