




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省遼陽縣集美學校2025屆高一數(shù)學第二學期期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設集合,則()A. B. C. D.2.設函數(shù)(為常實數(shù))在區(qū)間上的最小值為,則的值等于()A.4 B.-6 C.-3 D.-43.函數(shù),則命題正確的()A.是周期為1的奇函數(shù) B.是周期為2的偶函數(shù)C.是周期為1的非奇非偶函數(shù) D.是周期為2的非奇非偶函數(shù)4.某三棱柱的底面是邊長為2的正三角形,高為6,則該三棱柱的體積為A. B. C. D.5.已知x,y∈R,且x>y>0,則()A. B.C. D.lnx+lny>06.已知,則().A. B. C. D.7.已知a,b為不同的直線,為平面,則下列命題中錯誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.89.如果數(shù)列的前項和為,那么數(shù)列的通項公式是()A. B.C. D.10.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點P(tanα,cosα)在第三象限,則角α的終邊在第________象限.12.某校選修“營養(yǎng)與衛(wèi)生”課程的學生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法從這70名學生中抽取一個樣本,已知在高二年級的學生中抽取了8名,則在該校高一年級的學生中應抽取的人數(shù)為________.13.函數(shù)的最小正周期為______________.14.若關于x的不等式的解集是,則_________.15.把函數(shù)的圖象向左平移個單位長度,所得圖象正好關于原點對稱,則的最小值為________.16.若一個圓柱的側面展開圖是邊長為2的正方形,則此圓柱的體積為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務進行賬務支付的一種服務方式.繼卡類支付、網絡支付后,手機支付儼然成為新寵.某金融機構為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.組數(shù)第l組第2組第3組第4組第5組分組頻數(shù)203630104(1)求;(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.18.在中,角的對邊分別為,且.(1)求角A的大小;(2)若,求的面積.19.某網站推出了關于掃黑除惡情況的調查,調查數(shù)據(jù)表明,掃黑除惡仍是百姓最為關心的熱點,參與調查者中關注此問題的約占.現(xiàn)從參與關注掃黑除惡的人群中隨機選出人,并將這人按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)求出的值;(2)求這人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位).20.已知數(shù)列的前n項和為,,.(1)證明:數(shù)列為等比數(shù)列;(2)證明:.21.已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,,其前9項和為63.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前項和為,若存在正整數(shù),有,求實數(shù)的取值范圍;(3)將數(shù)列,的項按照“當為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面”的要求進行“交叉排列”,得到一個新的數(shù)列:…,求這個新數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
先求得集合,再結合集合的交集的概念及運算,即可求解.【詳解】由題意,集合,所以.故選:B.【點睛】本題主要考查了集合的交集的運算,其中解答中正確求解集合B,結合集合的交集的概念與運算求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、D【解析】試題分析:,,,當時,,故.考點:1、三角恒等變換;2、三角函數(shù)的性質.3、B【解析】由題得函數(shù)的周期為T==2,又f(x)=sin(πx?)?1=?cosπx?1,從而得出函數(shù)f(x)為偶函數(shù).故本題正確答案為B.4、C【解析】
計算結果.【詳解】因為底面是邊長為2的正三角形,所以底面的面積為,則該三棱柱的體積為.【點睛】本題考查了棱柱的體積公式,屬于簡單題型.5、A【解析】
結合選項逐個分析,可選出答案.【詳解】結合x,y∈R,且x>y>0,對選項逐個分析:對于選項A,,,故A正確;對于選項B,取,,則,故B不正確;對于選項C,,故C錯誤;對于選項D,,當時,,故D不正確.故選A.【點睛】本題考查了不等式的性質,屬于基礎題.6、A【解析】
.所以選A.【點睛】本題考查了二倍角及同角正余弦的差與積的關系,屬于基礎題.7、D【解析】
根據(jù)線面垂直與平行的性質與判定分析或舉出反例即可.【詳解】對A,根據(jù)線線平行與線面垂直的性質可知A正確.對B,根據(jù)線線平行與線面垂直的性質可知B正確.對C,根據(jù)線面垂直的性質知C正確.對D,當,時,也有可能.故D錯誤.故選:D【點睛】本題主要考查了空間中平行垂直的判定與性質,屬于中檔題.8、B【解析】
由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當且僅當nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內,二是多次用≥或≤時等號能否同時成立).9、D【解析】
利用計算即可.【詳解】當時,當時,即,故數(shù)列為等比數(shù)列則因為,所以故選:D【點睛】本題主要考查了已知來求,關鍵是利用來求解,屬于基礎題.10、D【解析】
根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當與面垂直時體積最大,最大值為,,設球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、二【解析】
由點P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因為點P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點評:本題考查第三象限內的點的坐標的符號,以及三角函數(shù)在各個象限內的符號.12、6【解析】
利用分層抽樣的定義求解.【詳解】設從高一年級的學生中抽取x名,由分層抽樣的知識可知,解得x=6.故答案為6.【點睛】本題主要考查分層抽樣,意在考查學生對該知識的掌握水平和分析推理能力.13、【解析】
利用函數(shù)y=Atan(ωx+φ)的周期為,得出結論.【詳解】函數(shù)y=3tan(3x)的最小正周期是,故答案為:.【點睛】本題主要考查函數(shù)y=Atan(ωx+φ)的周期性,利用了函數(shù)y=Atan(ωx+φ)的周期為.14、-14【解析】
由不等式的解集求出對應方程的實數(shù)根,利用根與系數(shù)的關系求出的值,從而可得結果.【詳解】不等式的解集是,所以對應方程的實數(shù)根為和,且,由根與系數(shù)的關系得,解得,,故答案為.【點睛】本題主要考查一元二次不等式的解集與一元二次不等式的根之間的關系,以及韋達定理的應用,屬于簡單題.15、【解析】
根據(jù)條件先求出平移后的函數(shù)表達式為,令即可得解.【詳解】由題意可得平移后的函數(shù)表達式為,圖象正好關于原點對稱,即,又,的最小值為.故答案為:.【點睛】本題考查了函數(shù)圖像的平移以及三角函數(shù)的圖像與性質,屬于基礎題.16、2【解析】試題分析:設圓柱的底面半徑為r,高為h,底面積為S,體積為V,則有2πr=2?r=1π,故底面面積S=πr考點:圓柱的體積三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)第1組2人,第3組3人,第4組1人;(3)【解析】
(1)直接計算.(2)根據(jù)分層抽樣的規(guī)律按照比例抽取.(3)設第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,排列出所有可能,再計算滿足條件的個數(shù),相除得到答案.【詳解】解:(1)由題意可知,,(2)第1,3,4組共有60人,所以抽取的比例是則從第1組抽取的人數(shù)為,從第3組抽取的人數(shù)為,從第4組抽取的人數(shù)為;(3)設第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,則從這6人中隨機抽取2人有如下種情形:,,,,,,,,,,,,,,共有15個基本事件.其中符合“抽取的2人來自同一個組”的基本事件有,,,共4個基本事件,所以抽取的2人來自同一個組的概率.【點睛】本題考查了頻率直方圖,分層抽樣,概率的計算,意在考查學生解決問題的能力.18、(1)A=;(2).【解析】
(1)由正弦定理將角關系轉化為變關系,再利用余弦定理得到答案.(2)利用余弦定理得到,代入面積公式得到答案.【詳解】解:(1)因為所以由正弦定理可得整理可得左右同除以得到,即A=(2)由余弦定理,得,故,所以三角形的面積.【點睛】本題考查了是正弦定理,余弦定理,面積公式,意在考查學生的計算能力.19、(1)0.035(2)平均數(shù)為:41.5歲中位數(shù)為:42.1歲【解析】
(1)根據(jù)頻率之和為1,結合題中條件,直接列出式子計算,即可得出結果;(2)根據(jù)每組的中間值乘該組的頻率再求和,即可得出平均數(shù);根據(jù)中位數(shù)兩邊的頻率之和相等,即可求出中位數(shù).【詳解】(1)由題意可得:,解得;(2)由題中數(shù)據(jù)可得:歲,設中位數(shù)為,則,∴歲.【點睛】本題主要考查完善頻率分布直方圖,以及由頻率分布直方圖求平均數(shù),中位數(shù)等,熟記頻率的性質,以及平均數(shù)與中位數(shù)的計算方法即可,屬于??碱}型.20、(1)證明見解析(2)證明見解析【解析】
(1)將已知遞推式取倒數(shù)得,,再結合等比數(shù)列的定義,即可得證;(2)由(1)得,再利用基本不等式以及放縮法和等比數(shù)列的求和公式,結合不等式的性質,即可得證.【詳解】(1),,可得,即有,可得數(shù)列為公比為2,首項為2的等比數(shù)列;(2)由(1)可得,即,由基本不等式可得,,即有.【點睛】本題考查等比數(shù)列的定義和通項公式、求和公式、考查構造數(shù)列法以及放縮法的運用,考查化簡運算能力和推理能力,屬于中檔題.21、(1);(2);(3)【解析】試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得,也即得,利用求得,再求得可得數(shù)列通項,利用已知可得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2)代入得,變形后得,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 4080.3-2021中藥智能制造技術規(guī)程第3部分:倉儲應用系統(tǒng)
- DB32/T 3960-2020抗水性自修復穩(wěn)定土基層施工技術規(guī)范
- DB32/T 3784-2020種子處理防治水稻病蟲害技術規(guī)程
- DB32/T 3761.8-2020新型冠狀病毒肺炎疫情防控技術規(guī)范第8部分:養(yǎng)老機構
- DB32/T 3712-2020風力發(fā)電設施防雷裝置檢測技術規(guī)范
- DB32/T 3681-2019小麥產毒鐮刀菌種群分子分型技術規(guī)范
- DB32/T 3162-2016衛(wèi)生應急衛(wèi)星通信系統(tǒng)技術規(guī)范
- DB31/T 913-2015特殊形式月季栽培技術規(guī)程
- DB31/T 752-2013城市軌道交通防雷裝置檢測技術規(guī)范
- DB31/T 1378-2022第二類醫(yī)療器械注冊服務規(guī)范
- 2025屆江蘇省蘇州市八校高三下學期三模聯(lián)考物理試卷(含解析)
- 分子氧氧化丙烯制環(huán)氧丙烷銅基催化劑的制備及性能研究
- 2024-2025學年青島版(五四學制)小學數(shù)學二年級下冊(全冊)知識點復習要點歸納
- 人教版五下-6.1 同分母分數(shù)加減法(教學課件)
- 2025年入團考試必考題目試題及答案
- 商標基礎知識試題及答案
- 在線網課學習課堂《人工智能(北理 )》單元測試考核答案
- 6.8相遇問題(課件) 數(shù)學四年級下冊(共15張PPT)人教版
- 各層次護理管理崗位職責及考核標準Word 文檔
- KTV開業(yè)活動策劃方案
- 車庫頂板行車及堆載方案范本
評論
0/150
提交評論