




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省姜堰四中重點中學中考數(shù)學模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(
)A. B. C. D.2.春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內空氣中的含藥量最高達到B.室內空氣中的含藥量不低于的持續(xù)時間達到了C.當室內空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內空氣中的含藥量低于時,對人體才是安全的,所以從室內空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內3.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近4.計算:得()A.- B.- C.- D.5.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.6.若,則的值為()A.12 B.2 C.3 D.07.如圖所示是小孔成像原理的示意圖,根據(jù)圖中所標注的尺寸,求出這支蠟燭在暗盒中所成像的長()A. B. C. D.8.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米9.2012﹣2013NBA整個常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小10.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(2+1)(2-1)的結果為_____.12.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.13.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.14.已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…當y<﹣3時,x的取值范圍是_____.15.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結BD,若∠A=32°,則∠CDB的大小為_____度.16.已知二次函數(shù)y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).三、解答題(共8題,共72分)17.(8分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:(1)請你補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);(3)為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.18.(8分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結果提前5天完成任務,原計劃每天種多少棵樹?19.(8分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質.小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質________.20.(8分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機準備生產(chǎn)空氣凈化設備,該企業(yè)決定從以下兩個投資方案中選擇一個進行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價為120元,每年最多可生產(chǎn)125萬件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價為80元,每件產(chǎn)品銷售價為180元,每年可生產(chǎn)120萬件,另外,年銷售x萬件乙產(chǎn)品時需上交0.5x2萬元的特別關稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個投資方案的年利潤y1(萬元)、y2(萬元)與相應生產(chǎn)件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關系式,并指出自變量的取值范圍;(2)分別求出這兩個投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?21.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)22.(10分)先化簡,再求值:,其中x滿足x2﹣x﹣1=1.23.(12分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)24.綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:補全折線統(tǒng)計圖和扇形統(tǒng)計圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數(shù))?并簡述其理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.2、C【解析】
利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【點睛】本題考查反比例函數(shù)的應用、一次函數(shù)的應用等知識,解題的關鍵是讀懂圖象信息,屬于中考??碱}型.3、D【解析】
根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.4、B【解析】
同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.【點睛】本題考查的是有理數(shù)的混合運算,熟練掌握運算法則是解題的關鍵.5、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.6、A【解析】
先根據(jù)得出,然后利用提公因式法和完全平方公式對進行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點睛】本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關鍵.7、D【解析】
過O作直線OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根據(jù)相似三角形對應邊的比等于對應高的比列方程求出CD的值即可.【詳解】過O作直線OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分別是△OAB和△OCD的高,∴,即,解得:CD=1.故選D.【點睛】本題考查相似三角形的應用,解題的關鍵在于理解小孔成像原理給我們帶來的已知條件,熟記相似三角形對應邊的比等于對應高的比是解題關鍵.8、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數(shù)科學計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).9、A【解析】試題分析:根據(jù)概率的意義,概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項錯誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項錯誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項錯誤。故選A。10、A【解析】試題分析:首先根據(jù)三角形的外角性質得到∠1+∠2=∠4,然后根據(jù)平行線的性質得到∠3=∠4求解.解:根據(jù)三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較小.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
利用平方差公式進行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進行二次根式的乘除運算,然后合并同類二次根式.12、25°或40°或10°【解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據(jù)等腰三角形的性質求出∠ADB,再求出∠BDC,然后根據(jù)等腰三角形兩底角相等列式計算即可得解.【詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數(shù)可以為25°或40°或10°故答案為25°或40°或10°【點睛】本題考查了等腰三角形的性質,難點在于分情況討論.13、有兩個不相等的實數(shù)根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數(shù)根.故答案為有兩個不相等的實數(shù)根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.14、x<﹣4或x>1【解析】
觀察表格求出拋物線的對稱軸,確定開口方向,利用二次函數(shù)的對稱性判斷出x=1時,y=-3,然后寫出y<-3時,x的取值范圍即可.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=-2,拋物線的開口向下,且x=1時,y=-3,所以,y<-3時,x的取值范圍為x<-4或x>1.故答案為x<-4或x>1.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,觀察圖表得到y(tǒng)=-3時的另一個x的值是解題的關鍵.15、1【解析】
根據(jù)等腰三角形的性質以及三角形內角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質以及三角形外角的性質在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【點睛】本題主要考查等腰三角形的性質,三角形外角的性質,掌握等邊對等角是解題的關鍵,注意三角形內角和定理的應用.16、增大.【解析】
根據(jù)二次函數(shù)的增減性可求得答案【詳解】∵二次函數(shù)y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數(shù)的性質,解題的關鍵是熟練的掌握二次函數(shù)的性質.三、解答題(共8題,共72分)17、(1)詳見解析;(2)72°;(3)3【解析】
(1)由B類型的人數(shù)及其百分比求得總人數(shù),在用總人數(shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結果,從中確定恰好抽到一男一女的結果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總人數(shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、原計劃每天種樹40棵.【解析】
設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關系建立方程求出其解即可.【詳解】設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經(jīng)檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.19、(1)任意實數(shù);(2);(3)見解析;(4)①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【解析】
(1)沒有限定要求,所以x為任意實數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點,連線即可解題,(4)看圖確定極點坐標,即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實數(shù);故答案為任意實數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.故答案為①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【點睛】本題考查了函數(shù)的圖像和性質,屬于簡單題,熟悉函數(shù)的圖像和概念是解題關鍵.20、(1)y1=(120-a)x(1≤x≤125,x為正整數(shù)),y2=100x-0.5x2(1≤x≤120,x為正整數(shù));(2)110-125a(萬元),10(萬元);(3)當40<a<80時,選擇方案一;當a=80時,選擇方案一或方案二均可;當80<a<100時,選擇方案二.【解析】
(1)根據(jù)題意直接得出y1與y2與x的函數(shù)關系式即可;(2)根據(jù)a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因為﹣0.5<0,可求出y2的最大值;(3)第三問要分兩種情況決定選擇方案一還是方案二.當2000﹣200a>1以及2000﹣200a<1.【詳解】解:(1)由題意得:y1=(120﹣a)x(1≤x≤125,x為正整數(shù)),y2=100x﹣0.5x2(1≤x≤120,x為正整數(shù));(2)①∵40<a<100,∴120﹣a>0,即y1隨x的增大而增大,∴當x=125時,y1最大值=(120﹣a)×125=110﹣125a(萬元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100時,y2最大值=10(萬元);(3)∵由110﹣125a>10,∴a<80,∴當40<a<80時,選擇方案一;由110﹣125a=10,得a=80,∴當a=80時,選擇方案一或方案二均可;由110﹣125a<10,得a>80,∴當80<a<100時,選擇方案二.考點:二次函數(shù)的應用.21、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數(shù)法即可求出直線AB的解析式;
(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據(jù)三角形的面積公式結合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;
(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據(jù)反比例函數(shù)解析式以及平移的性質找出點E、F、M、N的坐標,根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當△ABC的面積是8時,點C的坐標為(,0)或(,0).(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點睛】運用了反比例函數(shù)圖象上點的坐標特征、待定系數(shù)法求函數(shù)解析式、三角形的面積以及平行四邊形的面積,解題的關鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)找出關于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數(shù)形結合的重要性.22、2.【解析】
根據(jù)分式的運算法則進行計算化簡,再將x2=x+2代入即可.【詳解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.23、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據(jù)OF的長和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 磚檢測試題及答案
- 教育與培訓行業(yè)深度分析:教育行業(yè)教育培訓市場細分與競爭格局
- 機電公司考試試題及答案
- 寶武專家入庫考試題庫及答案
- 職業(yè)隊青訓水平測試題及答案
- 新能源物流車推廣應用與2025年物流行業(yè)成本優(yōu)化與成本控制報告
- 初中木工考試題及答案
- 口腔材料學考試題及答案
- 2025年土壤污染修復技術在土壤污染修復人才培養(yǎng)中的應用效果與成本效益研究報告
- 陶瓷代加工合作合同協(xié)議書
- 浙江開放大學2025年《社會保障學》形考任務2答案
- 【+初中語文++】++第11課《山地回憶》課件++統(tǒng)編版語文七年級下冊
- 2025年度企業(yè)應急預案演練計劃
- 2025屆東北三省四市教研聯(lián)合體高三下學期高考模擬考試(一模)英語試題及答案
- 煤炭工業(yè)建筑結構設計標準
- 食品科學與工程實踐試題集及答案
- 消防設備維護質量控制及保障措施
- 人教版七年級下冊數(shù)學壓軸題訓練(含解析)
- 2025年共青團入團積極分子考試測試試卷題庫及答案
- 注射泵培訓課件
- 牙外傷的治療
評論
0/150
提交評論