




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇揚州市邗江區(qū)公道中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在一段時間內(nèi),某種商品的價格(元)和銷售量(件)之間的一組數(shù)據(jù)如下表:價格(元)4681012銷售量(件)358910若與呈線性相關(guān)關(guān)系,且解得回歸直線的斜率,則的值為()A.0.2 B.-0.7 C.-0.2 D.0.72.在中,分別是角的對邊,若,且,則的值為()A.2 B. C. D.43.已知扇形的弧長是8,其所在圓的直徑是4,則扇形的面積是()A.8 B.6 C.4 D.164.等差數(shù)列的前項和為,若,則()A.27 B.36 C.45 D.545.對數(shù)列,若區(qū)間滿足下列條件:①;②,則稱為區(qū)間套.下列選項中,可以構(gòu)成區(qū)間套的數(shù)列是()A.;B.C.D.6.如圖是某個正方體的平面展開圖,,是兩條側(cè)面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為7.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能8.下列說法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則9.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學(xué)生中隨機抽取25名學(xué)生進行問卷調(diào)查,則應(yīng)抽取的女生人數(shù)為()A.5 B.10 C.15 D.2010.若,則()A. B. C.或 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù).利用課本中推導(dǎo)等差數(shù)列的前項和的公式的方法,可求得的值為_____.12.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.13.已知在中,角的大小依次成等差數(shù)列,最大邊和最小邊的長是方程的兩實根,則__________.14.的值為__________.15.在三棱錐中,已知,,則三棱錐內(nèi)切球的表面積為______.16.已知,,若,則____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,為坐標(biāo)原點,三點滿足.(1)求證:三點共線;(2)已知的最小值為,求實數(shù)的值.18.已知函數(shù)(1)求函數(shù)的最大值,以及取到最大值時所對應(yīng)的的集合;(2)在上恒成立,求實數(shù)的取值范圍.19.在中,,且的邊a,b,c所對的角分別為A,B,C.(1)求的值;(2)若,試求周長的最大值.20.已知,是函數(shù)的兩個相鄰的零點.(1)求;(2)若對任意,都有,求實數(shù)的取值范圍.(3)若關(guān)于的方程在上有兩個不同的解,求實數(shù)的取值范圍.21.在銳角中,角的對邊分別是,且.(1)求角的大小;(2)若,求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意利用線性回歸方程的性質(zhì)計算可得的值.【詳解】由于,,由于線性回歸方程過樣本中心點,故:,據(jù)此可得:.故選C.【點睛】本題主要考查線性回歸方程的性質(zhì)及其應(yīng)用,屬于中等題.2、A【解析】
由正弦定理,化簡求得,解得,再由余弦定理,求得,即可求解,得到答案.【詳解】在中,因為,且,由正弦定理得,因為,則,所以,即,解得,由余弦定理得,即,解得,故選A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.3、A【解析】
直接利用扇形的面積公式求解.【詳解】扇形的弧長l=8,半徑r=2,由扇形的面積公式可知,該扇形的面積S=1故選A【點睛】本題主要考查扇形面積的計算,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.4、B【解析】
利用等差數(shù)列的性質(zhì)進行化簡,由此求得的值.【詳解】依題意,所以,故選B.【點睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.5、C【解析】由題意,得為遞增數(shù)列,為遞減數(shù)列,且當(dāng)時,;而與與均為遞減數(shù)列,所以排除A,B,D,故選C.考點:新定義題目.6、D【解析】
先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.7、B【解析】
由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.8、D【解析】
利用不等式的性質(zhì)或舉反例的方法來判斷各選項中不等式的正誤.【詳解】對于A選項,若且,則,該選項錯誤;對于B選項,取,,,,則,均滿足,但,B選項錯誤;對于C選項,取,,則滿足,但,C選項錯誤;對于D選項,由不等式的性質(zhì)可知該選項正確,故選:D.【點睛】本題考查不等式正誤的判斷,常用不等式的性質(zhì)以及舉反例的方法來進行驗證,考查推理能力,屬于基礎(chǔ)題.9、B【解析】
利用分層抽樣的定義和方法求解即可.【詳解】設(shè)應(yīng)抽取的女生人數(shù)為,則,解得.故選B【點睛】本題主要考查分層抽樣的定義及方法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.10、D【解析】
利用誘導(dǎo)公式變形,再化弦為切求解.【詳解】由誘導(dǎo)公式化簡得,又,所以原式.故選D【點睛】本題考查三角函數(shù)的化簡求值,考查倍角公式及誘導(dǎo)公式的應(yīng)用,也考查了化弦為切的思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.【解析】
由題意可知:可以計算出的值,最后求出的值.【詳解】設(shè),,所以有,因為,因此【點睛】本題考查了數(shù)學(xué)閱讀能力、知識遷移能力,考查了倒序相加法.12、【解析】
利用正弦定理得到,再根據(jù)有兩解得到,計算得到答案.【詳解】由正弦定理得:若有兩解:故答案為【點睛】本題考查了正弦定理,有兩解,意在考查學(xué)生的計算能力.13、【解析】
本題首先可根據(jù)角的大小依次成等差數(shù)列計算出,然后根據(jù)最大邊和最小邊的長是方程的兩實根得到以及,最后根據(jù)余弦定理即可得出結(jié)果.【詳解】因為角成等差數(shù)列,所以,又因為,所以.設(shè)方程的兩根分別為、,則,由余弦定理可知:,所以.【點睛】本題考查根據(jù)余弦定理求三角形邊長,考查等差中項以及韋達定理的應(yīng)用,余弦定理公式為,體現(xiàn)了綜合性,是中檔題.14、【解析】
由反余弦可知,由此可計算出的值.【詳解】.故答案為:.【點睛】本題考查正切值的計算,涉及反余弦的應(yīng)用,求出反余弦值是關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.15、【解析】
先計算出三棱錐的體積,利用等體積法求出三棱錐的內(nèi)切球的半徑,再求出內(nèi)切球的表面積?!驹斀狻咳D中點為E,并連接AE、BE在中,由等腰三角形的性質(zhì)可得,同理則在中點A到邊BE的距離即為點A到平面BCD的距離h,在中,【點睛】本題綜合考查了三棱錐的體積、三棱錐內(nèi)切圓的求法、球的表面積,屬于中檔題.16、【解析】
由,,得的坐標(biāo),根據(jù)得,由向量數(shù)量積的坐標(biāo)表示即可得結(jié)果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點睛】本題主要考查了向量的坐標(biāo)運算,兩向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析;(2)【解析】試題分析:(1)只需證得即可。(2)由題意可求得的解析式,利用換元法轉(zhuǎn)換成,討論的單調(diào)性,可知其在上為單調(diào)減函數(shù),得可解得的值。(1)證明:三點共線.(2),,令,其對稱軸方程為在上是減函數(shù),。點睛:證明三點共線的方法有兩種:一、求出其中兩點所在直線方程,驗證第三點滿足直線方程即可;二、任取兩點構(gòu)造兩個向量,證明兩向量共線即可。在考試中經(jīng)常采用第二種方法,便于計算。證明四點共線一般采用第一種方法。18、,,;(2)【解析】
(1).此時,(2),,即,.,,且,,即的取值范圍是.19、(1)(2)【解析】
(1)利用三角公式化簡得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【詳解】(1)原式(2),時等號成立.周長的最大值為【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,周長的最大值,意在考查學(xué)生解決問題的能力.20、(1);(2);(3)【解析】
(1)先化簡,再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問題轉(zhuǎn)化為,根據(jù)三角函數(shù)的性質(zhì)求出的最大值,即可求出實數(shù)的取值范圍;(3)通過方程的解與函數(shù)圖象之間的交點關(guān)系,可將題意轉(zhuǎn)化為函數(shù)的圖象與直線有兩個交點,即可由圖象求出實數(shù)的取值范圍.【詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時,,的最大值為2,∴要使方程在上有兩個不同的解,即函數(shù)的圖象與直線有兩個交點,由圖象可知,即,所以【點睛】本題主要考查三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及利用二倍角公式、兩角差的余弦公式、兩角和的正弦公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 動物基因表達研究
- 創(chuàng)新驅(qū)動:產(chǎn)品設(shè)計全流程管控體系構(gòu)建與實踐
- 交通事故和解協(xié)議書正式版-1
- 及時如實報告生產(chǎn)安全事故是誰的責(zé)任
- 通信網(wǎng)絡(luò)建設(shè)安全管理體系與實施細節(jié)
- 莫言的小說與戲劇的評論
- 優(yōu)惠框架效應(yīng)-洞察及研究
- 生態(tài)文明建設(shè)新思路
- 政策補貼對谷物增產(chǎn)影響-洞察及研究
- 安全工作總結(jié)15
- GB/T 28733-2012固體生物質(zhì)燃料全水分測定方法
- 數(shù)與代數(shù)課件
- 工會審計實務(wù)課件
- 預(yù)防艾滋病、梅毒和乙肝母嬰傳播相關(guān)報表、上報流程和要求
- 食用油儲存期品質(zhì)變化的太赫茲光譜無損識別
- 胎盤早剝預(yù)案演練腳本
- 五山文學(xué)全集第一卷
- 聚磷腈功能高分子材料的合成及應(yīng)用
- 中國鐵路總公司《鐵路技術(shù)管理規(guī)程》(高速鐵路部分)2014年7月
- 鈣加維生素Dppt課件(PPT 14頁)
- TRD深基坑止水帷幕施工方案(22頁)
評論
0/150
提交評論