山東省濰坊市普通高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第1頁
山東省濰坊市普通高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第2頁
山東省濰坊市普通高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第3頁
山東省濰坊市普通高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第4頁
山東省濰坊市普通高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省濰坊市普通高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)是上的偶函數(shù),且在上單調(diào)遞減.若,,,則,,的大小關(guān)系為()A. B. C. D.2.已知等差數(shù)列中,若,則取最小值時的()A.9 B.8 C.7 D.63.為了得到函數(shù)y=sin(x+A.向左平行移動π3B.向右平行移動π3C.向上平行移動π3D.向下平行移動π34.如圖,某船在A處看見燈塔P在南偏東方向,后來船沿南偏東的方向航行30km后,到達(dá)B處,看見燈塔P在船的西偏北方向,則這時船與燈塔的距離是:A.10kmB.20kmC.D.5.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)t的最小值是()A.6 B.7 C.8 D.96.設(shè)是周期為4的奇函數(shù),當(dāng)時,,則()A. B. C. D.7.如圖是一名籃球運(yùn)動員在最近6場比賽中所得分?jǐn)?shù)的莖葉圖,則下列關(guān)于該運(yùn)動員所得分?jǐn)?shù)的說法錯誤的是()A.中位數(shù)為14 B.眾數(shù)為13 C.平均數(shù)為15 D.方差為198.某幾何體的三視圖如圖所示(實線部分),若圖中小正方形的邊長均為1,則該幾何體的體積是()A. B. C. D.9.已知變量x,y滿足約束條件x+y-2≥0,y≤2,x-y≤0,則A.2 B.3 C.4 D.610.在天氣預(yù)報中,有“降水概率預(yù)報”,例如預(yù)報“明天降水的概率為80%”,這是指()A.明天該地區(qū)有80%的地方降水,有20%的地方不降水B.明天該地區(qū)降水的可能性為80%C.氣象臺的專家中有80%的人認(rèn)為會降水,另外有20%的專家認(rèn)為不降水D.明天該地區(qū)有80%的時間降水,其他時間不降水二、填空題:本大題共6小題,每小題5分,共30分。11.若角的終邊經(jīng)過點,則___________.12.已知數(shù)列前項和,則該數(shù)列的通項公式______.13.若數(shù)列是等差數(shù)列,則數(shù)列也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若正項數(shù)列是等比數(shù)列,則數(shù)列_________也是等比數(shù)列.14.已知直線與圓相交于,兩點,則=______.15.已知三棱錐P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,則三棱錐P-ABC外接球的體積為__.16.已知是等比數(shù)列,且,,那么________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為.(Ⅰ)當(dāng)時,求數(shù)列的通項公式;(Ⅱ)當(dāng)時,令,求數(shù)列的前項和.18.如圖,漁船甲位于島嶼的南偏西方向的處,且與島嶼相距12海里,漁船乙以10海里/小時的速度從島嶼出發(fā)沿正北方向航行,若漁船甲同時從處出發(fā)沿北偏東的方向追趕漁船乙,剛好用2小時追上.(1)求漁船甲的速度;(2)求的值.19.為推動文明城市創(chuàng)建,提升城市整體形象,2018年12月30日鹽城市人民政府出臺了《鹽城市停車管理辦法》,2019年3月1日起施行.這項工作有利于市民養(yǎng)成良好的停車習(xí)慣,幫助他們樹立綠色出行的意識,受到了廣大市民的一致好評.現(xiàn)從某單位隨機(jī)抽取80名職工,統(tǒng)計了他們一周內(nèi)路邊停車的時間t(單位:小時),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:(1)從該單位隨機(jī)選取一名職工,試估計這名職工一周內(nèi)路邊停車的時間少于8小時的概率;(2)求頻率分布直方圖中a,b的值.20.如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點分別是棱上的點,平面平面(Ⅰ)確定點的位置,并說明理由;(Ⅱ)求三棱錐的體積.21.已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設(shè)數(shù)列的前n項和為,證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)偶函數(shù)的定義可變形,再直接比較的大小關(guān)系,即可利用函數(shù)的單調(diào)性得出,,的大小關(guān)系.【詳解】因為函數(shù)是上的偶函數(shù),所以,而,函數(shù)在上單調(diào)遞減,所以.故選:B.【點睛】本題主要考查函數(shù)的性質(zhì)的應(yīng)用,涉及奇偶性,指數(shù)函數(shù),對數(shù)函數(shù)的單調(diào)性,以及對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】

是等差數(shù)列,先根據(jù)已知求出首項和公差,再表示出,由的最小值確定n?!驹斀狻坑深}得,,解得,那么,當(dāng)n=7時,取到最小值-49.故選:C【點睛】本題考查等差數(shù)列前n項和,是基礎(chǔ)題。3、A【解析】試題分析:為得到函數(shù)y=sin(x+π3)【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,函數(shù)y=f(x)的圖象向右平移a個單位長度得y=f(x-a)的圖象,而函數(shù)y=f(x)的圖象向上平移a個單位長度得y=f(x)+a的圖象.左、右平移涉及的是x的變化,上、下平移涉及的是函數(shù)值f(x)的變化.4、C【解析】

在中,利用正弦定理求出得長,即為這時船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時船與燈塔的距離是,故選C.【點睛】本題主要考查了正弦定理,等腰三角形的判定與性質(zhì),以及特殊角的三角函數(shù)值的應(yīng)用,其中熟練掌握正弦定理是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】

先根據(jù)三角函數(shù)的性質(zhì)可推斷出函數(shù)的最小正周期為6,進(jìn)而推斷出,進(jìn)而求得t的范圍,進(jìn)而求得t的最小值.【詳解】函數(shù)的周期T=6,則,∴,∴正整數(shù)t的最小值是8.故選:C.【點睛】本題主要考查三角函數(shù)的周期性以及正弦函數(shù)的簡單性質(zhì),屬于基礎(chǔ)題.6、A【解析】

.故選A.7、D【解析】從題設(shè)中所提供的莖葉圖可知六個數(shù)分別是,所以其中位數(shù)是,眾數(shù)是,平均數(shù),方差是,應(yīng)選答案D.8、A【解析】

由三視圖得出原幾何體是由半個圓錐與半個圓柱組成的組合體,并且由三視圖得出圓柱和圓錐的底面半徑,圓錐的高,圓柱的高,再由圓柱和圓錐的體積公式得解.【詳解】由三視圖可知,幾何體是由半個圓錐與半個圓柱組成的組合體,其中圓柱和圓錐的底面半徑,圓錐的高,圓柱的高所以圓柱的體積,圓錐的體積,所以組合體的體積.故選B.【點睛】本題主要考查空間幾何體的三視圖和空間幾何體圓柱和圓錐的體積,屬于基礎(chǔ)題.9、D【解析】

試題分析:把函數(shù)轉(zhuǎn)化為表示斜率為截距為平行直線系,當(dāng)截距最大時,最大,由題意知當(dāng)直線過和兩條直線交點時考點:線性規(guī)劃的應(yīng)用.【詳解】請在此輸入詳解!10、B【解析】

降水概率指的是降水的可能性,根據(jù)概率的意義作出判斷即可.【詳解】“明天降水的概率為80%”指的是“明天該地區(qū)降水的可能性是80%”,且明天下雨的可能性比較大,故選:B.【點睛】本題主要考查了概率的意義,掌握概率是反映出現(xiàn)的可能性大小的量是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

直接根據(jù)任意角三角函數(shù)的定義求解,再利用兩角和的正切展開代入求解即可【詳解】由任意角三角函數(shù)的定義可得:.則故答案為3【點睛】本題主要考查了任意角三角函數(shù)的定義和兩角和的正切計算,熟記公式準(zhǔn)確計算是關(guān)鍵,屬于基礎(chǔ)題.12、【解析】

由,n≥2時,兩式相減,可得{an}的通項公式;【詳解】∵Sn=2n2(n∈N*),∴n=1時,a1=S1=2;n≥2時,an=Sn﹣=4n﹣2,a1=2也滿足上式,∴an=4n﹣2故答案為【點睛】本題考查數(shù)列的遞推式,考查數(shù)列的通項,屬于基礎(chǔ)題.13、【解析】

利用類比推理分析,若數(shù)列是各項均為正數(shù)的等比數(shù)列,則當(dāng)時,數(shù)列也是等比數(shù)列.【詳解】由數(shù)列是等差數(shù)列,則當(dāng)時,數(shù)列也是等差數(shù)列.類比上述性質(zhì),若數(shù)列是各項均為正數(shù)的等比數(shù)列,則當(dāng)時,數(shù)列也是等比數(shù)列.故答案為:【點睛】類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).14、.【解析】

將圓的方程化為標(biāo)準(zhǔn)方程,由點到直線距離公式求得弦心距,再結(jié)合垂徑定理即可求得.【詳解】圓,變形可得所以圓心坐標(biāo)為,半徑直線,變形可得由點到直線距離公式可得弦心距為由垂徑定理可知故答案為:【點睛】本題考查了直線與圓相交時的弦長求法,點到直線距離公式的應(yīng)用及垂徑定理的用法,屬于基礎(chǔ)題.15、6【解析】

如圖所示,取PB的中點O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O為外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半徑R=∴V球=43πR3=4π3×(62)3=6點睛:空間幾何體與球接、切問題的求解方法:(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點P,A,B,C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=a,PB=b,PC=c,一般把有關(guān)元素“補(bǔ)形”成為一個球內(nèi)接長方體,利用4R2=a2+b2+c2求解.16、【解析】

先根據(jù)等比數(shù)列性質(zhì)化簡方程,再根據(jù)平方性質(zhì)得結(jié)果.【詳解】∵是等比數(shù)列,且,,∴,即,則.【點睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用的方法,進(jìn)行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化簡得,然后利用裂項求和,求出數(shù)列的前項和【詳解】解:(Ⅰ)數(shù)列的前項和為①.當(dāng)時,,當(dāng)時,②,①﹣②得:,(首相不符合通項),所以:(Ⅱ)當(dāng)時,①,當(dāng)時,②,①﹣②得:,所以:令,所以:,則:【點睛】本題考查求數(shù)列通項的求法的應(yīng)用,以及利用裂項求和法進(jìn)行求和,屬于基礎(chǔ)題18、(1)14海里/小時;(2).【解析】

(1),∴∴,∴V甲海里/小時;(2)在中,由正弦定理得∴∴.點評:主要是考查了正弦定理和余弦定理的運(yùn)用,屬于基礎(chǔ)題.19、(1);(2),.【解析】

(1)由頻率分布表即可得解;(2)由頻率分布直方圖中小矩形的高為頻率與組距的比值,觀察頻率分布表的數(shù)據(jù)即可得解.【詳解】解:(1)記“從該單位隨機(jī)選取一名職工,這名職工該周路邊停車的時間少于8小時”為事件A,則;(2)由頻率分布表可得:區(qū)間的頻數(shù)為8,則,區(qū)間的頻數(shù)為12,則.【點睛】本題考查了頻率分布表及頻率分布直方圖,屬基礎(chǔ)題.20、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(1)根據(jù)面面平行的性質(zhì)得到,,根據(jù)平行關(guān)系和長度關(guān)系得到點是的中點,點是的中點;(2),因為,所以,進(jìn)而求得體積.詳解:(1)因為平面平面,平面平面,平面平面,所以,又因為,所以四邊形是平行四邊形,所以,即點是的中點.因為平面平面,平面平面,平面平面,所以,又因為點是的中點,所以點是的中點,綜上:分別是的中點;(Ⅱ)因為,所以,又因為平面平面,所以平面;又因為,所以.點睛:這個題目考查了面面平行的性質(zhì)應(yīng)用,空間幾何體的體積的求法,求椎體的體積,一般直接應(yīng)用公式底乘以高乘以三分之一,會涉及到點面距離的求法,點面距可以通過建立空間直角坐標(biāo)系來求得點面距離,或者尋找面面垂直,再直接過點做交線的垂線即可;當(dāng)點面距離不好求時,還可以等體積轉(zhuǎn)化.21、(1);(2)見解析.【解析】【試題分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論