福建省永春三中2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
福建省永春三中2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
福建省永春三中2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
福建省永春三中2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
福建省永春三中2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省永春三中2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,若關于的不等式在區(qū)間上有解,則()A. B. C. D.2.在△ABC中,已知tan=sinC,則△ABC的形狀為()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形3.已知等差數(shù)列的公差d>0,則下列四個命題:①數(shù)列是遞增數(shù)列;②數(shù)列是遞增數(shù)列;③數(shù)列是遞增數(shù)列;④數(shù)列是遞增數(shù)列;其中正確命題的個數(shù)為()A.1 B.2 C.3 D.44.的值等于()A. B. C. D.5.的展開式中含的項的系數(shù)為()A.-1560 B.-600 C.600 D.15606.在△ABC中,角A、B、C所對的邊分別為,己知A=60°,,則B=()A.45° B.135° C.45°或135° D.以上都不對7.在區(qū)間上任取兩個實數(shù),則滿足的概率為()A. B. C. D.8.兩直角邊分別為1,的直角三角形繞其斜邊所在的直線旋轉一周,得到的幾何體的表面積是()A. B.3π C. D.9.已知是的邊上的中點,若向量,,則向量等于()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A.3 B.4 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.67是等差數(shù)列-5,1,7,13,……中第項,則___________________.12.設等比數(shù)列的公比,前項和為,則.13.已知數(shù)列滿足,,,則__________.14.若八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的方差是______15.某工廠生產(chǎn)三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為,現(xiàn)用分層抽樣方法抽出一個容量為的樣本,樣本中種型號產(chǎn)品有16件,那么此樣本的容量=16.若直線與圓相交于,兩點,且(其中為原點),則的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓A:,圓B:.(Ⅰ)求經(jīng)過圓A與圓B的圓心的直線方程;(Ⅱ)已知直線l:,設圓心A關于直線l的對稱點為,點C在直線l上,當?shù)拿娣e為14時,求點C的坐標.18.已知數(shù)列為等差數(shù)列,,,數(shù)列為等比數(shù)列,,公比.(1)求數(shù)列、的通項公式;(2)求數(shù)列的前n項和.19.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.求證:(1)AC⊥BC1;(2)AC1∥平面CDB1.20.已知函數(shù)(I)求的值(II)求的最小正周期及單調(diào)遞增區(qū)間.21.等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)題意得不等式對應的二次函數(shù)開口向上,分別討論三種情況即可.【詳解】由題意得:當當當綜上所述:,選D.【點睛】本題主要考查了含參一元二次不等式中參數(shù)的取值范圍.解這類題通常分三種情況:.有時還需要結合韋達定理進行解決.2、C【解析】

解:因為選C3、B【解析】

對于各個選項中的數(shù)列,計算第n+1項與第n項的差,看此差的符號,再根據(jù)遞增數(shù)列的定義得出結論.【詳解】設等差數(shù)列,d>0∵對于①,n+1﹣n=d>0,∴數(shù)列是遞增數(shù)列成立,是真命題.對于②,數(shù)列,得,,所以不一定是正實數(shù),即數(shù)列不一定是遞增數(shù)列,是假命題.對于③,數(shù)列,得,,不一定是正實數(shù),故是假命題.對于④,數(shù)列,故數(shù)列是遞增數(shù)列成立,是真命題.故選:B.【點睛】本題考查用定義判斷數(shù)列的單調(diào)性,考查學生的計算能力,正確運用遞增數(shù)列的定義是關鍵,屬于基礎題.4、D【解析】

利用誘導公式先化簡,再利用差角的余弦公式化簡得解.【詳解】由題得原式=.故選D【點睛】本題主要考查誘導公式和差角的余弦公式化簡求值,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、A【解析】的項可以由或的乘積得到,所以含的項的系數(shù)為,故選A.6、A【解析】

利用正弦定理求出的值,再結合,得出,從而可得出的值。【詳解】由正弦定理得,,,則,所以,,故選:A?!军c睛】本題考查利用正弦定理解三角形,要注意正弦定理所適用的基本情形,同時在求得角時,利用大邊對大角定理或兩角之和不超過得出合適的答案,考查計算能力,屬于中等題。7、B【解析】試題分析:因為,在區(qū)間上任取兩個實數(shù),所以區(qū)域的面積為4,其中滿足的平面區(qū)域面積為,故滿足的概率為,選B.考點:本題主要考查幾何概型概率計算.點評:簡單題,幾何概型概率的計算,關鍵是認清兩個“幾何度量”.8、A【解析】

由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐的側面積計算公式可得.【詳解】由題得直角三角形的斜邊為2,則斜邊上的高為.由題知該幾何體為兩個倒立的圓錐底對底組合在一起,其中,故選.【點睛】本題考查旋轉體的定義,圓錐的表面積的計算,屬于基礎題.9、C【解析】

根據(jù)向量加法的平行四邊形法則,以及平行四邊形的性質(zhì)可得,,解出向量.【詳解】根據(jù)平行四邊形法則以及平行四邊形的性質(zhì),有.故選.【點睛】本題考查向量加法的平行四邊形法則以及平行四邊形的性質(zhì),意在考查學生對這些知識的理解掌握水平和分析推理能力.10、C【解析】

根據(jù)框圖模擬程序運算即可.【詳解】第一次執(zhí)行程序,,,繼續(xù)循環(huán),第二次執(zhí)行程序,,,,繼續(xù)循環(huán),第三次執(zhí)行程序,,,,繼續(xù)循環(huán),第四次執(zhí)行程序,,,,繼續(xù)循環(huán),第五次執(zhí)行程序,,,,跳出循環(huán),輸出,結束.故選C.【點睛】本題主要考查了程序框圖,涉及循環(huán)結構,解題關鍵注意何時跳出循環(huán),屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、13【解析】

根據(jù)數(shù)列寫出等差數(shù)列通項公式,再令算出即可.【詳解】由題意,首項為-5,公差為,則等差數(shù)列通項公式,令,則故答案為:13.【點睛】等差數(shù)列首項為公差為,則通項公式12、15【解析】分析:運用等比數(shù)列的前n項和公式與數(shù)列通項公式即可得出的值.詳解:數(shù)列為等比數(shù)列,故答案為15.點睛:本題考查了等比數(shù)列的通項公式與前n項和公式,考查學生對基本概念的掌握能力與計算能力.13、-2【解析】

根據(jù)題干中所給的表達式得到數(shù)列的周期性,進而得到結果.【詳解】根據(jù)題干表達式得到可以得數(shù)列具有周期性,周期為3,故得到故得到故答案為:-2.【點睛】這個題目考查了求數(shù)列中的某些項,一般方法是求出數(shù)列通項,對于數(shù)列通項不容易求的題目,可以列出數(shù)列的一些項,得到數(shù)列的周期或者一些其它規(guī)律,進而得到數(shù)列中的項.14、1.1【解析】

先求出這組數(shù)據(jù)的平均數(shù),由此能求出這組數(shù)據(jù)的方差.【詳解】八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的平均數(shù)為:(87+88+90+91+92+93+93+94)=91,∴這組數(shù)據(jù)的方差為:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案為1.1.【點睛】本題考查方差的求法,考查平均數(shù)、方差的性質(zhì)等基礎知識,考查了推理能力與計算能力,是基礎題.15、1.【解析】

解:A種型號產(chǎn)品所占的比例為2/(2+3+5)=2/10,16÷2/10=1,故樣本容量n=1,16、【解析】

首先根據(jù)題意畫出圖形,再根據(jù)求出直線的傾斜角,求斜率即可.【詳解】如圖所示直線與圓恒過定點,不妨設,因為,所以,兩種情況討論,可得,.所以斜率.故答案為:【點睛】本題主要考查直線與圓的位置關系,同時考查了數(shù)形結合的思想,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(I)(Ⅱ)或【解析】

(Ⅰ)由已知求得,的坐標,再由直線方程的兩點式得答案;(Ⅱ)求出的坐標,再求出以及所在直線方程,設,利用點到直線的距離公式求出到所在直線的距離,代入三角形面積公式解得值,進而可得的坐標.【詳解】(Ⅰ)將圓:化為:,所以,圓:化為:,所以,所以經(jīng)過圓與圓的圓心的直線方程為:,即.(Ⅱ)如圖,設,由題意可得,解得,即,∴,所在直線方程為,即,設,則到所在直線的距離,由,解得或,∴點的坐標為或.【點睛】本題考查直線與圓位置關系的應用,考查點關于直線的對稱點的求法,考查運算求解能力,屬于中檔題.18、(1),.(2)【解析】

(1)先求出等差數(shù)列的首項和公差,求出等比數(shù)列的首項即得數(shù)列、的通項公式;(2)利用分組求和求數(shù)列的前n項和.【詳解】(1)由題得.由題得.(2)由題得,所以數(shù)列的前n項和.【點睛】本題主要考查等差等比數(shù)列的通項的基本量的計算,考查數(shù)列通項的求法和求和,意在考查學生對這些知識的理解掌握水平.19、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)由勾股定理可證得為直角三角形即可證得,由直棱柱可知面,可證得,根據(jù)線面垂直的判定定理可證得面,從而可得.(2)設與的交點為,連結,由中位線可證得,根據(jù)線面平行的判定定理可證得平面.試題解析:證明:(1)證明:,,為直角三角形且,即.又∵三棱柱為直棱柱,面,面,,,面,面,.(2)設與的交點為,連結,是的中點,是的中點,.面,面,平面.考點:1線線垂直,線面垂直;2線面平行.20、(I)2;(II)的最小正周期是,.【解析】

(Ⅰ)直接利用三角函數(shù)關系式的恒等變換,把函數(shù)的關系式變形成正弦型函數(shù),進一步求出函數(shù)的值.(Ⅱ)直接利用函數(shù)的關系式,求出函數(shù)的周期和單調(diào)區(qū)間.【詳解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,則f()=﹣2sin()=2,(Ⅱ)因為.所以的最小正周期

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論