




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆貴州省興仁縣黔龍學(xué)校中考沖刺卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD2.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.3.中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局網(wǎng)站公布,2016年國(guó)內(nèi)生產(chǎn)總值約為74300億元,將74300億用科學(xué)計(jì)數(shù)法可以表示為()A. B. C. D.4.如圖所示,在長(zhǎng)方形紙片ABCD中,AB=32cm,把長(zhǎng)方形紙片沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,AF=25cm,則AD的長(zhǎng)為()A.16cm B.20cm C.24cm D.28cm5.在一個(gè)不透明的口袋中裝有4個(gè)紅球和若干個(gè)白球,他們除顏色外其他完全相同.通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個(gè) B.15個(gè) C.13個(gè) D.12個(gè)6.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件,全組共互贈(zèng)了132件.如果全組共有x名同學(xué),則根據(jù)題意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×27.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點(diǎn)落在C′的位置,若BC=4,則BC′的長(zhǎng)為()A.2 B.2 C.4 D.38.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°9.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)10.如圖,矩形ABCD內(nèi)接于⊙O,點(diǎn)P是上一點(diǎn),連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.11.如果與互補(bǔ),與互余,則與的關(guān)系是()A. B.C. D.以上都不對(duì)12.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.12二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.一個(gè)布袋中裝有1個(gè)藍(lán)色球和2個(gè)紅色球,這些球除顏色外其余都相同,隨機(jī)摸出一個(gè)球后放回?fù)u勻,再隨機(jī)摸出一個(gè)球,則兩次摸出的球都是紅球的概率是_____.14.不等式的解集是________________15.如圖,圓錐底面圓心為O,半徑OA=1,頂點(diǎn)為P,將圓錐置于平面上,若保持頂點(diǎn)P位置不變,將圓錐順時(shí)針滾動(dòng)三周后點(diǎn)A恰好回到原處,則圓錐的高OP=_____.16.因式分解:2x17.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?”該問題的答案是______步.18.方程的根為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.20.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.21.(6分)班級(jí)的課外活動(dòng),學(xué)生們都很積極.梁老師在某班對(duì)同學(xué)們進(jìn)行了一次關(guān)于“我喜愛的體育項(xiàng)目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問題:(1)調(diào)查了________名學(xué)生;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為________;(4)學(xué)校將舉辦運(yùn)動(dòng)會(huì),該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(8分)如圖,已知直線AB經(jīng)過點(diǎn)(0,4),與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是.求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo).在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在請(qǐng)說明理由.過線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?23.(8分)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,與過點(diǎn)C的⊙O的切線交于點(diǎn)D.若AC=4,BC=2,求OE的長(zhǎng).試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.24.(10分)某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.求甲、乙兩種商品的每件進(jìn)價(jià);該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?25.(10分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點(diǎn),頂點(diǎn)為D(0,4),AB=4,設(shè)點(diǎn)F(m,0)是x軸的正半軸上一點(diǎn),將拋物線C繞點(diǎn)F旋轉(zhuǎn)180°,得到新的拋物線C′.(1)求拋物線C的函數(shù)表達(dá)式;(2)若拋物線C′與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),求m的取值范圍.(3)如圖2,P是第一象限內(nèi)拋物線C上一點(diǎn),它到兩坐標(biāo)軸的距離相等,點(diǎn)P在拋物線C′上的對(duì)應(yīng)點(diǎn)P′,設(shè)M是C上的動(dòng)點(diǎn),N是C′上的動(dòng)點(diǎn),試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請(qǐng)說明理由.26.(12分)如圖,在梯形中,,,,,點(diǎn)為邊上一動(dòng)點(diǎn),作⊥,垂足在邊上,以點(diǎn)為圓心,為半徑畫圓,交射線于點(diǎn).(1)當(dāng)圓過點(diǎn)時(shí),求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時(shí),以點(diǎn)為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點(diǎn),試通過計(jì)算說明線段和的比值為定值,并求出次定值.27.(12分)“十九大”報(bào)告提出了我國(guó)將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點(diǎn),為了調(diào)查學(xué)生對(duì)霧霾天氣知識(shí)的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的一種統(tǒng)計(jì)圖表.對(duì)霧霾了解程度的統(tǒng)計(jì)表對(duì)霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問題:統(tǒng)計(jì)表中:m=,n=;請(qǐng)?jiān)趫D1中補(bǔ)全條形統(tǒng)計(jì)圖;請(qǐng)問在圖2所示的扇形統(tǒng)計(jì)圖中,D部分扇形所對(duì)應(yīng)的圓心角是多少度?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;
B、∵BE=DF,
四邊形BFDE是等腰梯形,
本選項(xiàng)不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF.
故選B.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.2、A【解析】解:連接OB、OC,連接AO并延長(zhǎng)交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點(diǎn)睛:本題考查的是三角形的外接圓與外心、扇形面積的計(jì)算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.3、D【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:74300億=7.43×1012,
故選:D.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.4、C【解析】
首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對(duì)等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長(zhǎng)方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長(zhǎng)方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點(diǎn)睛】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關(guān)鍵.5、D【解析】
由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進(jìn)而求出白球個(gè)數(shù)即可.【詳解】解:設(shè)白球個(gè)數(shù)為:x個(gè),
∵摸到紅色球的頻率穩(wěn)定在25%左右,
∴口袋中得到紅色球的概率為25%,
∴,
解得:x=12,
經(jīng)檢驗(yàn)x=12是原方程的根,
故白球的個(gè)數(shù)為12個(gè).
故選:D.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,根據(jù)大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率得出是解題的關(guān)鍵.6、B【解析】全組有x名同學(xué),則每名同學(xué)所贈(zèng)的標(biāo)本為:(x-1)件,那么x名同學(xué)共贈(zèng):x(x-1)件,所以,x(x-1)=132,故選B.7、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點(diǎn)落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點(diǎn)睛】本題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識(shí),準(zhǔn)確添加輔助線,掌握折疊前后圖形的對(duì)應(yīng)關(guān)系是解題的關(guān)鍵.8、D【解析】
由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.【點(diǎn)睛】本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關(guān)鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補(bǔ)的角.9、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點(diǎn)位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點(diǎn)A(―3,6)且相似比為,∴點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點(diǎn)A′′和點(diǎn)A′(-1,2)關(guān)于原點(diǎn)O對(duì)稱,∴A′′(1,―2).故答案選D.考點(diǎn):位似變換.10、A【解析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點(diǎn)睛】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握?qǐng)A周角定理與勾股定理的應(yīng)用.11、C【解析】
根據(jù)∠1與∠2互補(bǔ),∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進(jìn)行運(yùn)算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點(diǎn)睛】此題主要記住互為余角的兩個(gè)角的和為90°,互為補(bǔ)角的兩個(gè)角的和為180度.12、B【解析】分析:過點(diǎn)D作DE⊥AB于E,先求出CD的長(zhǎng),再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計(jì)算即可得解.詳解:如圖,過點(diǎn)D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點(diǎn)睛:考查角平分線的性質(zhì),角平分線上的點(diǎn)到角兩邊的距離相等.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【詳解】畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【點(diǎn)睛】本題主要考查了求隨機(jī)事件概率的方法,解本題的要點(diǎn)在于根據(jù)題意畫出樹狀圖,從而求出答案.14、【解析】
首先去分母進(jìn)而解出不等式即可.【詳解】去分母得,1-2x>15移項(xiàng)得,-2x>15-1合并同類項(xiàng)得,-2x>14系數(shù)化為1,得x<-7.故答案為x<-7.【點(diǎn)睛】此題考查了解一元一次不等式,解不等式要依據(jù)不等式的基本性質(zhì):(1)不等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)或整式不等號(hào)的方向不變;(2)不等式的兩邊同時(shí)乘以或除以同一個(gè)正數(shù)不等號(hào)的方向不變;(3)不等式的兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)的方向改變.15、2【解析】
先利用圓的周長(zhǎng)公式計(jì)算出PA的長(zhǎng),然后利用勾股定理計(jì)算PO的長(zhǎng).【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).16、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點(diǎn):因式分解.17、.【解析】
如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設(shè)ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設(shè)未知數(shù),構(gòu)建方程是解題的關(guān)鍵.18、﹣2或﹣7【解析】
把無理方程轉(zhuǎn)化為整式方程即可解決問題.【詳解】?jī)蛇吰椒降玫剑?3+2=25,∴=6,∴(x+11)(2-x)=36,解得x=-2或-7,經(jīng)檢驗(yàn)x=-2或-7都是原方程的解.故答案為-2或-7【點(diǎn)睛】本題考查無理方程,解題的關(guān)鍵是學(xué)會(huì)把無理方程轉(zhuǎn)化為整式方程.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】
(1)先把B點(diǎn)坐標(biāo)代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點(diǎn)的坐標(biāo)特征確定C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進(jìn)行計(jì)算;(3)觀察函數(shù)圖象得到當(dāng)﹣4<x<0或x>2時(shí),一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點(diǎn)坐標(biāo)為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當(dāng)﹣x﹣2=0時(shí),x=﹣2,∴點(diǎn)C的坐標(biāo)為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當(dāng)﹣4<x<0或x>2時(shí),一次函數(shù)的值小于反比例函數(shù)的值.【點(diǎn)睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點(diǎn)問題以及待定系數(shù)法的運(yùn)用,靈活運(yùn)用待定系數(shù)法是解題的關(guān)鍵,注意數(shù)形結(jié)合思想的正確運(yùn)用.20、(1)y=2x﹣5,;(2).【解析】
試題分析:(1)把A坐標(biāo)代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標(biāo)代入求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)用矩形面積減去周圍三個(gè)小三角形的面積,即可求出三角形ABC面積.試題解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式為,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A與B坐標(biāo)代入y=kx+b中得:,解得:k=2,b=﹣5,則一次函數(shù)解析式為y=2x﹣5;(2)如圖,S△ABC=考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;一次函數(shù)及其應(yīng)用;反比例函數(shù)及其應(yīng)用.21、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計(jì)算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項(xiàng)目所占的人數(shù)=50×18%=9(名),所以其它項(xiàng)目所占人數(shù)=50﹣15﹣9﹣16=10(名)補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(3)“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,概率的計(jì)算.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息及掌握概率的計(jì)算方法是解決問題的關(guān)鍵.22、(1)直線y=x+4,點(diǎn)B的坐標(biāo)為(8,16);(2)點(diǎn)C的坐標(biāo)為(﹣,0),(0,0),(6,0),(32,0);(3)當(dāng)M的橫坐標(biāo)為6時(shí),MN+3PM的長(zhǎng)度的最大值是1.【解析】
(1)首先求得點(diǎn)A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點(diǎn)坐標(biāo);(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點(diǎn)C的坐標(biāo);(3)設(shè)M(a,a2),得MN=a2+1,然后根據(jù)點(diǎn)P與點(diǎn)M縱坐標(biāo)相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點(diǎn)A是直線與拋物線的交點(diǎn),且橫坐標(biāo)為-2,,A點(diǎn)的坐標(biāo)為(-2,1),設(shè)直線的函數(shù)關(guān)系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當(dāng)x=8時(shí),y=16,
∴點(diǎn)B的坐標(biāo)為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設(shè)點(diǎn)C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點(diǎn)C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)(3)設(shè)M(a,a2),則MN=,又∵點(diǎn)P與點(diǎn)M縱坐標(biāo)相同,∴x+4=a2,∴x=,∴點(diǎn)P的橫坐標(biāo)為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當(dāng)a=6時(shí),取最大值1,∴當(dāng)M的橫坐標(biāo)為6時(shí),MN+3PM的長(zhǎng)度的最大值是123、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的長(zhǎng),從而得到半徑AO.再由△AOE∽△ACB,得到OE的長(zhǎng);(2)連結(jié)OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結(jié)論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結(jié)OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點(diǎn):切線的性質(zhì);探究型;和差倍分.24、甲種商品的每件進(jìn)價(jià)為40元,乙種商品的每件進(jìn)價(jià)為48元;甲種商品按原銷售單價(jià)至少銷售20件.【解析】【分析】設(shè)甲種商品的每件進(jìn)價(jià)為x元,乙種商品的每件進(jìn)價(jià)為(x+8))元根據(jù)“某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同”列出方程進(jìn)行求解即可;設(shè)甲種商品按原銷售單價(jià)銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進(jìn)行求解即可.【詳解】設(shè)甲種商品的每件進(jìn)價(jià)為x元,則乙種商品的每件進(jìn)價(jià)為元,根據(jù)題意得,,解得,經(jīng)檢驗(yàn),是原方程的解,答:甲種商品的每件進(jìn)價(jià)為40元,乙種商品的每件進(jìn)價(jià)為48元;甲乙兩種商品的銷售量為,設(shè)甲種商品按原銷售單價(jià)銷售a件,則,解得,答:甲種商品按原銷售單價(jià)至少銷售20件.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,一元一次不等式的應(yīng)用,弄清題意,找出等量關(guān)系列出方程,找出不等關(guān)系列出不等式是解題的關(guān)鍵.25、(1);(2)2<m<;(1)m=6或m=﹣1.【解析】
(1)由題意拋物線的頂點(diǎn)C(0,4),A(,0),設(shè)拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點(diǎn)坐標(biāo)為(2m,﹣4),設(shè)拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當(dāng)△PFM是等腰直角三角形時(shí),四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數(shù)法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數(shù)法即可解決問題.【詳解】(1)由題意拋物線的頂點(diǎn)C(0,4),A(,0),設(shè)拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數(shù)表達(dá)式為.(2)由題意拋物線C′的頂點(diǎn)坐標(biāo)為(2m,﹣4),設(shè)拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結(jié)論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當(dāng)△PFM是等腰直角三角形時(shí),四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點(diǎn)M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時(shí),四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時(shí),四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時(shí),四邊形PMP′N是正方形.26、(1)x=1(2)(1)【解析】
(1)作AM⊥BC、連接AP,由等腰梯形性質(zhì)知BM=4、AM=1,據(jù)此知tanB=tanC=,從而可設(shè)PH=1k,則CH=4k、PC=5k,再表示
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年河南省豫地科技集團(tuán)有限公司招聘真題
- 林地轉(zhuǎn)讓協(xié)議書
- 《建筑施工安全檢查標(biāo)準(zhǔn)》圖解
- 石大學(xué)前兒童保育學(xué)課件6-1集體兒童膳食預(yù)防食物中毒
- 城市與鄉(xiāng)村文化互鑒與融合-洞察闡釋
- 重慶菜籽油生產(chǎn)線項(xiàng)目可行性研究報(bào)告(參考模板)
- 玩具與文體用品企業(yè)經(jīng)營(yíng)管理方案
- 2025至2030年中國(guó)電子五金制品行業(yè)投資前景及策略咨詢報(bào)告
- 2025至2030年中國(guó)理石漆行業(yè)投資前景及策略咨詢報(bào)告
- 2025至2030年中國(guó)牛外脊行業(yè)投資前景及策略咨詢報(bào)告
- 河南省安陽市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 板式換熱器數(shù)據(jù)表
- 新一代大學(xué)英語(提高篇)綜合教程2U3 The-way-to-leadership-Task-list
- 拖欠工資起訴狀模版
- 山東省各地電廠聯(lián)系方式
- 北京林業(yè)大學(xué)會(huì)計(jì)學(xué)基礎(chǔ)期末提高D試卷
- 鉀離子的測(cè)定—四苯硼鈉季胺鹽容量法
- 犬貓常見消化道疾?。ㄕn堂PPT)
- KV單電源環(huán)形網(wǎng)絡(luò)繼電保護(hù)設(shè)計(jì)——保護(hù)
- 疾病預(yù)防控制體系建設(shè)與發(fā)展
- 一種基于SG3525的半橋高頻開關(guān)電源
評(píng)論
0/150
提交評(píng)論