2024年江西省全南縣八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第1頁
2024年江西省全南縣八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第2頁
2024年江西省全南縣八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第3頁
2024年江西省全南縣八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第4頁
2024年江西省全南縣八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024年江西省全南縣八年級下冊數(shù)學期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,菱形ABCD中,對角線AC,BD相交于點O,若AB=5,AC=6,則BD的長是()A.8 B.7 C.4 D.32.如圖,在邊長為4的等邊△ABC中,D,E分別為AB,BC的中點,EF⊥AC于點F,G為EF的中點,連接DG,則DG的長為()A.2 B.C. D.13.直角三角形中,斜邊,,則的長度為()A. B. C. D.4.平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是()A.5 B.6 C.7 D.85.如圖,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足為D,∠ACB的平分線交AD于點E,則AE的長為()A. B.4 C. D.66.已知n是自然數(shù),是整數(shù),則n最小為()A.0 B.2 C.4 D.407.在一次科技作品制作比賽中,某小組8件作品的成績(單位:分)分別是:7、10、9、8、7、9、9、8,對這組數(shù)據(jù),下列說法正確的是()A.眾數(shù)是9 B.中位數(shù)是8 C.平均數(shù)是8 D.方差是78.一組數(shù)據(jù)3、7、2、5、8的中位數(shù)是().A.2B.5C.7D.89.在ABCD中,∠A:∠B:∠C:∠D的度數(shù)比值可能是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:110.如圖,已知△ABC和△PBD都是正方形網(wǎng)格上的格點三角形(頂點為網(wǎng)格線的交點),要使ΔABC∽ΔPBD,則點P的位置應落在A.點上 B.點上 C.點上 D.點上二、填空題(每小題3分,共24分)11.某中學組織初二學生開展籃球比賽,以班為單位單循環(huán)形式(每兩班之間賽一場),現(xiàn)計劃安排15場比賽,則共有多少個班級參賽?設(shè)有x個班級參賽,根據(jù)題意,可列方程為_____.12.函數(shù)y=中,自變量x的取值范圍是_____.13.已知關(guān)于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________14.若正數(shù)a是一元二次方程x2﹣5x+m=0的一個根,﹣a是一元二次方程x2+5x﹣m=0的一個根,則a的值是______.15.因式分解:___________.16.如圖,矩形ABCD中,AB=4,BC=8,對角線AC的垂直平分線分別交AD、BC于點E.F,連接CE,則△DCE的面積為___.17.在菱形中,,其周長為,則菱形的面積為__.18.計算:=____.三、解答題(共66分)19.(10分)蒙蒙和貝貝都住在M小區(qū),在同一所學校讀書.某天早上,蒙蒙7:30從M小區(qū)站乘坐校車去學校,途中??苛藘蓚€站點才到達學校站點,且每個站點停留2分鐘,校車在每個站點之間行駛速度相同;當天早上,貝貝7:38從M小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,結(jié)果比蒙蒙乘坐的校車早2分鐘到學校站點.他們乘坐的車輛從M小區(qū)站出發(fā)所行駛路程y(千米)與校車離開M小區(qū)站的時間x(分)之間的函數(shù)圖象如圖所示.(1)求圖中校車從第二個站點出發(fā)時點B的坐標;(2)求蒙蒙到達學校站點時的時間;(3)求貝貝乘坐出租車出發(fā)后經(jīng)過多少分鐘追上蒙蒙乘坐的校車,并求此時他們距學校站點的路程.20.(6分)當今,青少年用電腦手機過多,視力水平下降已引起了全社會的關(guān)注,某校為了解八年級1000名學生的視力情況,從中抽查了150名學生的視力情況,通過數(shù)據(jù)處理,得到如下的頻數(shù)分布表.解答下列問題:視力范圍分組組中值頻數(shù)3.95≤x<4.254.1204.25≤x<4.554.4104.55≤x<4.854.7304.85≤x<5.155.0605.15≤x<5.455.330合計150(1)分別指出參加抽測學生的視力的眾數(shù)、中位數(shù)所在的范圍;(2)若視力為4.85以上(含4.85)為正常,試估計該校八年級學生視力正常的人數(shù)約為多少?(3)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)相應組中的權(quán).請你估計該校八年級學生的平均視力是多少?21.(6分)在梯形中,,點在直線上,聯(lián)結(jié),過點作的垂線,交直線與點,(1)如圖1,已知,:求證:;(2)已知:,①當點在線段上,求證:;②當點在射線上,①中的結(jié)論是否成立?如果成立,請寫出證明過程;如果不成立,簡述理由.22.(8分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制出如下的統(tǒng)計圖①和圖②,請跟進相關(guān)信息,解答下列問題:(1)本次抽測的男生人數(shù)為,圖①中m的值為;(2)求本次抽測的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達標,根據(jù)樣本數(shù)據(jù),估計該校350名九年級男生中有多少人體能達標.23.(8分)(1)因式分解:(2)計算:24.(8分)化簡.25.(10分)在平面直角坐標系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C.D都在第一象限。(1)當點A坐標為(4,0)時,求點D的坐標;(2)求證:OP平分∠AOB;(3)直接寫出OP長的取值范圍(不要證明).26.(10分)某地重視生態(tài)建設(shè),大力發(fā)展旅游業(yè),各地旅游團紛沓而至,某旅游團上午6時從旅游館出發(fā),乘汽車到距離的旅游景點觀光,該汽車離旅游館的距離與時間的關(guān)系可以用如圖的折線表示.根據(jù)圖象提供的有關(guān)信息,解答下列問題:(1)求該團旅游景點時的平均速度是多少?(2)該團在旅游景點觀光了多少小時?(3)求該團返回到賓館的時刻是幾時?

參考答案一、選擇題(每小題3分,共30分)1、A【解析】

根據(jù)菱形的對角線互相垂直,利用勾股定理列式求出OB即可.【詳解】解:∵四邊形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根據(jù)勾股定理,得:OB===4,∴BD=2OB=8,故選A.【點睛】本題考查了菱形性質(zhì),勾股定理的應用等知識,比較簡單,熟記性質(zhì)是解題的關(guān)鍵.2、B【解析】

直接利用三角形的中位線定理得出,且,再利用勾股定理以及直角三角形的性質(zhì)得出EG以及DG的長.【詳解】連接DE∵在邊長為4的等邊△ABC中,D,E分別為AB,BC的中點∴DE是△ABC的中位線,∴,且,∵EF⊥AC于點F∴,∴故根據(jù)勾股定理得∵G為EF的中點∴∴故答案為:B.【點睛】本題考查了三角形的線段長問題,掌握中位線定理、勾股定理是解題的關(guān)鍵.3、A【解析】

根據(jù)題意,是直角三角形,利用勾股定理解答即可.【詳解】解:根據(jù)勾股定理,在中,故選A【點睛】本題考查勾股定理的運用,屬于基礎(chǔ)題型,熟練掌握勾股定理是解答本題的關(guān)鍵.4、A【解析】試題分析:構(gòu)造等腰三角形,①分別以A,B為圓心,以AB的長為半徑作圓;②作AB的中垂線.如圖,一共有5個C點,注意,與B重合及與AB共線的點要排除.故答案選A.考點:等腰三角形的判定;坐標與圖形性質(zhì).5、C【解析】

在Rt△ABD中,利用等腰直角三角形的性質(zhì)列方程求解可求出AD和BD的長度,在Rt△ADC中;根據(jù)直角三角形中30度角所對的直角邊是斜邊的一半的性質(zhì)可列方程解出CD,同理可得DE的長度,再利用AE=AD?DE即可求出AE的長度.【詳解】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,即△ABD、△ADC和△CDE為直角三角形,在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,∴∠B=∠BAD=45°,則AD=BD,設(shè)AD=BD=x,由勾股定理得:,解得:,即AD=BD=,在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=,∴∠CAD=30°,則,設(shè)CD=x,則AC=2x,由勾股定理得:,解得:,即CD,∵CE平分∠ACD,∴∠ECD=30°,在Rt△CDE中,同理得:DE,∴AE=AD﹣DE=﹣=,故選:C.【點睛】本題主要考查了勾股定理、等腰直角三角形的性質(zhì)和直角三角形中30度角所對的直角邊是斜邊的一半,根據(jù)勾股定理構(gòu)造方程是解題的關(guān)鍵.6、C【解析】

求出n的范圍,再根據(jù)是整數(shù)得出(211-n)是完全平方數(shù),然后求滿足條件的最小自然數(shù)是n.【詳解】解:∵n是自然數(shù),是整數(shù),且211-n≥1.

∴(211-n)是完全平方數(shù),且n≤211.

∴(211-n)最大平方數(shù)是196,即n=3.

故選:C.【點睛】主要考查了乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù).二次根式的運算法則:乘法法則=.除法法則=.解題關(guān)鍵是分解成一個完全平方數(shù)和一個代數(shù)式的積的形式.7、A【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的計算方法計算即可.【詳解】解:8件作品的成績(單位:分)按從小到大的順序排列為:7、7、8、8、9、9、9、10,9出現(xiàn)了3次,次數(shù)最多,故眾數(shù)為9,中位數(shù)為(8+9)÷2=8.5,平均數(shù)=(7×2+8×2+9×3+10)÷8=8.375,方差S2=[2×(7-8.375)2+2×(8-8.375)2+3×(9-8.375)2+(10-8.375)2]=0.1.所以A正確,B、C、D均錯誤.故選A.【點睛】本題考查了平均數(shù),中位數(shù),眾數(shù)與方差的求法.平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù));一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差,方差是用來衡量一組數(shù)據(jù)波動大小的量.8、B【解析】分析:先從小到大排列,然后找出中間的數(shù)即可.詳解:從小到大排列:2,3,5,7,8,∴中位數(shù)是5.故選B.點睛:本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).9、D【解析】

根據(jù)平行四邊形的兩組對角分別相等判定即可【詳解】解:根據(jù)平行四邊形的兩組對角分別相等,可知D正確.

故選:D.【點睛】此題主要考查了平行四邊形的性質(zhì),熟知平行四邊形的兩組對角分別相等這一性質(zhì)是解題的關(guān)鍵.10、B【解析】

由圖可知∠BPD一定是鈍角,若要△ABC∽△PBD,則PB、PD與AB、AC的比值必須相等,可據(jù)此進行判斷.【詳解】解:由圖知:∠BAC是鈍角,又△ABC∽△PBD,則∠BPD一定是鈍角,∠BPD=∠BAC,又BA=1,AC=1,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P1符合這樣的要求,故P點應該在P1.

故選B.【點睛】此題考查了相似三角形的性質(zhì),以及勾股定理的運用,相似三角形的對應角相等,對應邊成比例,書寫相似三角形時,對應頂點要對應.熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵二、填空題(每小題3分,共24分)11、【解析】

設(shè)共有x個班級參賽,根據(jù)每一個球隊和其他球隊都打(x﹣1)場球,但每兩個球隊間只有一場比賽,可得總場次=×球隊數(shù)×(球隊數(shù)-1),據(jù)此列方程即可.【詳解】有x個班級參賽,根據(jù)題意,得=15,故答案為:=15.【點睛】本題考查了一元二次方程的應用,弄清題意,找準等量關(guān)系列出方程是解題的關(guān)鍵.12、x≥1.【解析】

根據(jù)被開方數(shù)大于等于0,分母不等于0列式進行計算即可得解.【詳解】解:根據(jù)題意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,自變量x的取值范圍是x≥1.故答案為x≥1.【點睛】本題考查的知識點為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負數(shù).13、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.14、1【解析】試題解析:∵a是一元二次方程x2-1x+m=0的一個根,-a是一元二次方程x2+1x-m=0的一個根,∴a2-1a+m=0①,a2-1a-m=0②,①+②,得2(a2-1a)=0,∵a>0,∴a=1.考點:一元二次方程的解.15、【解析】

直接提取公因式2,進行分解因式即可.【詳解】2(a-b).故答案為:2(a-b).【點睛】此題主要考查了提取公因式法分解因式,正確找出公因式是解題關(guān)鍵.16、6【解析】

根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì)可得AE=CE,設(shè)CE=x,表示出ED的長度,然后在Rt△CDE中,利用勾股定理列式計算,再利用三角形面積公式解答即可.【詳解】∵四邊形ABCD是矩形,∴CD=AB=4,AD=BC=8,∵EO是AC的垂直平分線,∴AE=CE,設(shè)CE=x,則ED=AD?AE=8?x,在Rt△CDE中,CE=CD+ED,即x=4+(8?x),解得:x=5,即CE的長為5,DE=8?5=3,所以△DCE的面積=×3×4=6,故答案為:6.【點睛】此題考查線段垂直平分線的性質(zhì),矩形的性質(zhì),解題關(guān)鍵在于得出AE=CE.17、【解析】

根據(jù)菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系得出BE的長,即可得出菱形的面積.【詳解】過點作于點,菱形中,其周長為,,,菱形的面積.故答案為:.【點睛】此題主要考查了菱形的面積以及其性質(zhì),得出AE的長是解題關(guān)鍵.18、4【解析】

根據(jù)二次根式的性質(zhì)化簡即可.【詳解】原式=.故答案為:4.【點睛】本題考查了二次根式的性質(zhì),熟練掌握是解答本題的關(guān)鍵.三、解答題(共66分)19、(1)(14,1);(2)7點12分;(3)8分鐘追上,路程3千米;【解析】

(1)首先求出校車的速度,因為校車在每個站點之間行駛速度相同,得出點A的坐標,進而求出點B的坐標;(2)由速度和B點坐標,求出BC的表達式,得知C點縱坐標為9,則橫坐標為22,即蒙蒙到學校用了22分;(3)貝貝比蒙蒙乘坐的校車早2分鐘到學校站點,則貝貝到學校用了20分,即E(20,9)又F(8,0),求出EF的表達式,貝貝乘坐出租車出發(fā)后追上蒙蒙乘坐的校車,即BC和EF的交點G(16,6),即可得知貝貝乘坐出租車出發(fā)后經(jīng)過8分鐘追上蒙蒙乘坐的校車,此時他們距學校站點的路程是3千米.【詳解】解:(1)校車的速度為3÷6=0.1(千米/分鐘),點A的縱坐標的值為3+0.1×(12-8)=1.故點B的坐標(14,1).(2)由(1)中得知,B(14,1),設(shè)BC的表達式為,將B代入,得C點縱坐標為9,則橫坐標為22,即蒙蒙到學校用了22分,蒙蒙出發(fā)的時間為7:30,所以蒙蒙到達學校站點時的時間為7點12分.(3)貝貝比蒙蒙乘坐的校車早2分鐘到學校站點,則貝貝到學校用了20分,即E(20,9)又F(8,0),設(shè)EF表達式為,解得貝貝乘坐出租車出發(fā)后追上蒙蒙乘坐的校車,即BC和EF的交點G,解得即G(16,6)故貝貝乘坐出租車出發(fā)后經(jīng)過8分鐘追上蒙蒙乘坐的校車,此時他們距學校站點的路程是3千米.【點睛】(1)此題主要考查一次函數(shù)的實際應用,校車的速度即為直線的斜率,校車在每個站點之間行駛速度相同,即可得解;(2)已知點坐標求一次函數(shù)解析式,直接代入即可得解,得出坐標要聯(lián)系實際應用回答;(3)將兩個一次函數(shù)解析式聯(lián)合得解,再聯(lián)系實際應用.20、(1)眾數(shù)在4.85≤x<5.15的范圍內(nèi),中位數(shù)在4.85≤x<5.15的范圍內(nèi);(2)八年級視力正常的學生約有600人;(3)八年級1000名學生平均視力為4.1.【解析】

(1)根據(jù)眾數(shù)和中位數(shù)的定義,就是出現(xiàn)次數(shù)最多的數(shù)和中間的數(shù)(中間兩數(shù)的平均數(shù)),據(jù)此即可判斷;(2)利用總?cè)藬?shù)1000乘以對應的比例即可求解;(3)根據(jù)用樣本估計總體解答即可.【詳解】(1)眾數(shù)在4.85≤x<5.15的范圍內(nèi),中位數(shù)在4.85≤x<5.15的范圍內(nèi);(2)依題意,八年級視力正常的學生約有人;(3)依題意,抽樣調(diào)查150名學生的平均視力為,由于可以用樣本估計總體,因此得到八年級1000名學生平均視力為4.1.【點睛】本題考查讀頻數(shù)分布表的能力和利用統(tǒng)計圖表獲取信息的能力;利用統(tǒng)計圖表獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖表,才能作出正確的判斷和解決問題.21、(1)證明見解析;(2)①證明見解析;②結(jié)論仍然成立,證明見解析.【解析】

(1)過F作FM⊥AD,交AD的延長線于點M,通過AAS證明△ABE≌△EMF,根據(jù)全等三角形的性質(zhì)即可得出AB=AD;(2)①在AB上截取AG=AE,連接EG.通過ASA證明△BGE≌△EDF,根據(jù)全等三角形的性質(zhì)即可得出BE=EF;②【詳解】(1)如圖:過F作FM⊥AD,交AD的延長線于點M,∴∠M=90°,∵∠BEF=90°,∴∠AEB+MEF=90°,∵∠A=90°,∴∠ABE+∠AEB=90°,∴∠MEF=∠ABE,在△ABE和△EMF中,,∴△ABE≌△EMF(AAS)∴AB=ME,AE=MF,∵AM∥BC,∠C=45°,∴∠MDF=∠C=45°,∴∠DFM=45°,∴DM=FM,∴DM=AE,∴DM+ED=AE+ED,即AD=EM,∴AB=AD;(2)①證明:如圖,在AB上截取AG=AE,連接EG,則∠AGE=∠AEG,∵∠A=90°,∠A+∠AGE+∠AEG=180°,∴∠AGE=45°,∴∠BGE=135°,∵AD∥BC,∴∠C+∠D=180°,又∵∠C=45°,∴∠D=135°,∴∠BGE=∠D,∵AB=AD,AG=AE,∴BG=DE,∵EF⊥BE,∴∠BEF=90°,又∵∠A+∠ABE+∠AEB=180°,∠AEB+∠BEF+∠DEF=180°,∠A=90°,∴∠ABE=∠DEF,在△BGE與△EDF中,,∴△BGE≌△EDF(ASA),∴BE=EF;②結(jié)論仍然成立,證明如下,如圖:延長BA到點G,使BG=ED,連接EG,則△EAG是等腰直角三角形,∴∠EGB=45°,∵ED∥BC,∠C=45°,∴∠FDE=45°,∴∠FDE=45°,∴∠EGB=∠FDE,∵∠A=90°,∴∠AEB+∠ABE=90°,∵EF⊥EB,∴∠FED+∠AEB=90°,∴∠AEB=∠FED,在△BGE與△EFD中,,∴△BGE≌△EDF(ASA),∴BE=EF.【點睛】本題是四邊形綜合題,考查了等腰直角三角形的性質(zhì),梯形的性質(zhì),全等三角形的判定和性質(zhì),綜合性較強,有一定的難度.添加適當?shù)妮o助線構(gòu)造全等三角形是解題的關(guān)鍵.22、(1)50、1;(2)平均數(shù)為5.16次,眾數(shù)為5次,中位數(shù)為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據(jù)4次的人數(shù)及其百分比可得總?cè)藬?shù),用6次的人數(shù)除以總?cè)藬?shù)求得m即可;(Ⅱ)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義求解可得;(Ⅲ)總?cè)藬?shù)乘以樣本中5、6、7次人數(shù)之和占被調(diào)查人數(shù)的比例可得.詳解:(Ⅰ)本次抽測的男生人數(shù)為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數(shù)為=5.16次,眾數(shù)為5次,中位數(shù)為=5次;(Ⅲ)×350=2.答:估計該校350名九年級男生中有2人體能達標.點睛:本題考查了條形統(tǒng)計圖,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).23、(1)(xy-2)2;(2).【解析】

(1)利用完全平方公式因式分解;

(2)根據(jù)分式的減法運算法則計算.【詳解】解:(1)=(xy)2-4xy+22

=(xy-2)2(2)===.【點睛】本題考查的是因式分解、分式的加減運算,掌握完全平方公式因式分解、分式的加減法法則是解題的關(guān)鍵.24、【解析】解:原式=.先將括號里面的通分后,將除法轉(zhuǎn)換成乘法,約分化簡.25、(1)D(7,4);(2)見解析;(3)<OP?5.【解析】

(1)作DM⊥x軸于點M,由A(4,0)可以得出OA=4,由勾股定理就可以求出OB=3,再通過證明△AOB≌△DMA就可以求出AM=OB,DM=OA,從而求出點D的坐標.(2)過P點作x軸和y軸的垂線,可通過三角形全等,證明O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論