2024屆寧波市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
2024屆寧波市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
2024屆寧波市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
2024屆寧波市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
2024屆寧波市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆寧波市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對數(shù)列,“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.非充分非必要條件2.等差數(shù)列中,已知,則()A.1 B.2 C.3 D.43.若關(guān)于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.4.已知水平放置的是按“斜二測畫法”得到如圖所示的直觀圖,其中,,那么原中的大小是().A. B. C. D.5.設(shè)等差數(shù)列的前項和為,,,則()A. B. C. D.6.在空間中,有三條不重合的直線,,,兩個不重合的平面,,下列判斷正確的是A.若∥,∥,則∥ B.若,,則∥C.若,∥,則 D.若,,∥,則∥7.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.498.已知,,,則的最小值為()A. B. C.7 D.99.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形10.已知向量,,若,則銳角α為()A.45° B.60° C.75° D.30°二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列的前項和為,已知,且對任意正整數(shù),都有,若恒成立,則實數(shù)的最小值為________.12.已知角的頂點在坐標(biāo)原點,始邊與軸正半軸重合,終邊經(jīng)過點,則______.13.在上,滿足的的取值范圍是______.14.若直線上存在點可作圓的兩條切線,切點為,且,則實數(shù)的取值范圍為.15.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”,已知正項數(shù)列為“調(diào)和數(shù)列”,且,則的最大值是__________.16.將函數(shù)的圖象上每一點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變;再向右平移個單位長度得到的圖象,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,且(1)求的定義域.(2)判斷的奇偶性,并說明理由.18.已知等差數(shù)列的前n項和為,關(guān)于x的不等式的解集為.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前n項和.19.如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點.(1)求證:直線平面;(2)求直線與平面所成角的余弦值;(3)設(shè)為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.20.解關(guān)于x的不等式21.設(shè)函數(shù)(1)若對于一切實數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

根據(jù)遞增數(shù)列的性質(zhì)和充分必要條件判斷即可【題目詳解】對于任意成立可以推出其前n項和數(shù)列為遞增數(shù)列,但反過來不成立如當(dāng)時其,此時為遞增數(shù)列但所以“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的充分非必要條件故選:A【題目點撥】要說明一個命題不成立,只需舉出一個反例即可.2、B【解題分析】

已知等差數(shù)列中一個獨立條件,考慮利用等差中項求解.【題目詳解】因為為等差數(shù)列,所以,由,,故選B.【題目點撥】本題考查等差數(shù)列的性質(zhì),等差數(shù)列中若,則,或用基本量、表示,整體代換計算可得,屬于簡單題.3、A【解題分析】

利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【題目詳解】關(guān)于的不等式在區(qū)間上有解在上有解即在上成立,設(shè)函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【題目點撥】本題是一道關(guān)于一元二次不等式的題目,解題的關(guān)鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎(chǔ)題.4、C【解題分析】

根據(jù)斜二測畫法還原在直角坐標(biāo)系的圖形,進(jìn)而分析出的形狀,可得結(jié)論.【題目詳解】如圖:根據(jù)斜二測畫法可得:,故原是一個等邊三角形故選【題目點撥】本題是一道判定三角形形狀的題目,主要考查了平面圖形的直觀圖,考查了數(shù)形結(jié)合的思想5、A【解題分析】

利用等差數(shù)列的基本量解決問題.【題目詳解】解:設(shè)等差數(shù)列的公差為,首項為,因為,,故有,解得,,故選A.【題目點撥】本題考查了等差數(shù)列的通項公式與前項和公式,解決問題的關(guān)鍵是熟練運用基本量法.6、C【解題分析】

根據(jù)空間中點、線、面的位置關(guān)系的判定與性質(zhì),逐項判定,即可求解,得到答案.【題目詳解】由題意,A中,若∥,∥,則與可能平行、相交或異面,故A錯誤;B中,若,,則與c可能平行,也可能垂直,比如墻角,故B錯誤;C中,若,∥,則,正確;D中,若,,∥,則與可能平行或異面,故D錯誤;故選C.【題目點撥】本題主要考查了線面位置關(guān)系的判定與證明,其中解答中熟記空間中點、線、面的位置關(guān)系,以及線面位置關(guān)系的判定定理和性質(zhì)定理是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.7、C【解題分析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點時,取得最大值,B點的坐標(biāo)為,即時是最大值.考點:線性規(guī)劃綜合問題.8、B【解題分析】

根據(jù)條件可知,,,從而得出,這樣便可得出的最小值.【題目詳解】;,且,;;,當(dāng)且僅當(dāng)時等號成立;;的最小值為.故選:.【題目點撥】考查基本不等式在求最值中的應(yīng)用,注意應(yīng)用基本不等式所滿足的條件及等號成立的條件.9、B【解題分析】

利用正弦定理結(jié)合條件,得到,再由,結(jié)合余弦定理,得到,從而得到答案.【題目詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【題目點撥】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.10、D【解題分析】

根據(jù)向量的平行的坐標(biāo)表示,列出等式,即可求出.【題目詳解】因為,所以,又為銳角,因此,即,故選D.【題目點撥】本題主要考查向量平行的坐標(biāo)表示.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】令,可得是首項為,公比為的等比數(shù)列,所以,,實數(shù)的最小值為,故答案為.12、【解題分析】

利用三角函數(shù)的定義可求出的值.【題目詳解】由三角函數(shù)的定義可得,故答案為.【題目點撥】本題考查利用三角函數(shù)的定義求余弦值,解題的關(guān)鍵就是三角函數(shù)定義的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.13、【解題分析】

由,結(jié)合三角函數(shù)線,即可求解,得到答案.【題目詳解】如圖所示,因為,所以滿足的的取值范圍為.【題目點撥】本題主要考查了特殊角的三角函數(shù)值,以及三角函數(shù)線的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解題分析】試題分析:若,則,直線上存在點可作和的兩條切線等價于直線與圓有公共點,由圓心到直線的距離公式可得,解之可得.考點:點到直線的距離公式及直線與圓的位置關(guān)系的運用.【方法點晴】本題主要考查了點到直線的距離公式及直線與圓的位置關(guān)系的運用,涉及到圓心到直線的距離公式和不等式的求解,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及學(xué)生的推理與運算能力,本題的解答中直線上存在點可作和的兩條切線等價于直線與圓有公共點是解答的關(guān)鍵.15、1【解題分析】因為數(shù)列是“調(diào)和數(shù)列”,所以,即數(shù)列是等差數(shù)列,所以,,所以,,當(dāng)且僅當(dāng)時等號成立,因此的最大值為1.點睛:本題考查創(chuàng)新意識,關(guān)鍵是對新定義的理解與轉(zhuǎn)化,由“調(diào)和數(shù)列”的定義及已知是“調(diào)和數(shù)列”,得數(shù)列是等差數(shù)列,從而利用等差數(shù)列的性質(zhì)可化簡已知數(shù)列的和,結(jié)合基本不等式求得最值.本題難度不大,但考查的知識較多,要熟練掌握各方面的知識與方法,才能正確求解.16、【解題分析】

由條件根據(jù)函數(shù)的圖象變換規(guī)律,,可得的解析式,從而求得的值.【題目詳解】將函數(shù)向左平移個單位長度可得的圖象;保持縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的倍可得的圖象,故,所以.【題目點撥】本題主要考查函數(shù))的圖象變換規(guī)律,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)偶函數(shù),理由見解析.【解題分析】

(1)根據(jù)對數(shù)的真數(shù)大于零可求得和的定義域,取交集可得定義域;(2)整理可得,驗證得,得到函數(shù)為偶函數(shù).【題目詳解】(1)令得:定義域為令得:定義域為的定義域為(2)由題意得:,為定義在上的偶函數(shù)【題目點撥】本題考查函數(shù)定義域的求解、奇偶性的判斷;求解函數(shù)定義域的關(guān)鍵是明確對數(shù)函數(shù)要求真數(shù)必須大于零,且需保證構(gòu)成函數(shù)的每個部分都有意義.18、(1);(2).【解題分析】

(1)根據(jù)不等式的解集,得到和,從而得到等差數(shù)列的公差,得到的通項公式;(2)由(1)得到的的通項,得到的通項,利用等比數(shù)列的求和公式,得到答案.【題目詳解】(1)因為關(guān)于x的不等式的解集為,所以得到,,所以,,為等差數(shù)列,設(shè)其公差為,所以,所以,所以(2)因為,所以所以是以為首項,為公比的等比數(shù)列,所以.【題目點撥】本題考查一元二次不等式解集與系數(shù)的關(guān)系,求等差數(shù)列的通項,等比數(shù)列求和,屬于簡單題.19、(1)見解析(2)(3)存在點,使,詳見解析【解題分析】

(1)設(shè)與的交點為,證明進(jìn)而證明直線平面.(2)先證明直線與平面所成角的為,再利用長度關(guān)系計算.(3)過點作,證明平面,即,所以存在.【題目詳解】(1)設(shè)與的交點為,顯然為中點,又點為線段的中點,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,點在平面上的投影為點,直線與平面所成角的為,,,,.(3)過點作,又因為平面,平面,所以,平面,平面,平面,,所以存在點,使.【題目點撥】本題考查了立體幾何線面平行,線面夾角,動點問題,將線線垂直轉(zhuǎn)化為線面垂直是解題的關(guān)鍵.20、見解析.【解題分析】試題分析:(1)討論的取值,分為,兩種情形,求出對應(yīng)不等式的解集即可.試題解析:當(dāng)a=0時,原不等式化為x+10,解得;當(dāng)時,原不等式化為,解得;綜上所述,當(dāng)a=0時,不等式的解集為,當(dāng)時,不等式的解集為.點睛:本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,元二次不等式的核心還是求一元二次方程的根,然后在結(jié)合圖象判定其區(qū)間解題時應(yīng)用分類討論的思想,是中檔題目;常見的討論形式有:1、對二項式系數(shù)進(jìn)行討論;2、相對應(yīng)的方程是否有根進(jìn)行討論;3、對應(yīng)根的大小進(jìn)行討論.21、(1)(2)【解題分析】

(1)由不等式恒成立,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;(2)要使對于恒成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論