




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇省泰州市姜堰區(qū)高三綜合題(三)數(shù)學(xué)試題(文史類)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種2.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為A. B. C. D.3.函數(shù)的大致圖像為()A. B.C. D.4.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.5.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件6.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.7.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.8.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.129.已知復(fù)數(shù),,則()A. B. C. D.10.已知函數(shù),若,則的值等于()A. B. C. D.11.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.12.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.14.展開式中的系數(shù)為_________.15.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.16.已知F為拋物線C:x2=8y的焦點(diǎn),P為C上一點(diǎn),M(﹣4,3),則△PMF周長(zhǎng)的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.18.(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱.(為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.19.(12分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.20.(12分)是數(shù)列的前項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列中最小的項(xiàng).21.(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.22.(10分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【題目詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【題目點(diǎn)撥】本題考查排列組合,屬于基礎(chǔ)題.2、B【解題分析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【題目詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【題目點(diǎn)撥】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識(shí)求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.3、D【解題分析】
通過取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【題目詳解】函數(shù)的定義域?yàn)椋?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【題目點(diǎn)撥】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.4、D【解題分析】
使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【題目詳解】解:,又解得,所以故選:D【題目點(diǎn)撥】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.5、B【解題分析】
由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【題目詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【題目點(diǎn)撥】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.6、B【解題分析】
將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【題目詳解】設(shè)公差為,則,所以,,,.故選:B【題目點(diǎn)撥】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.7、A【解題分析】
先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【題目詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【題目點(diǎn)撥】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.8、D【解題分析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【題目詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【題目點(diǎn)撥】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.9、B【解題分析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.10、B【解題分析】
由函數(shù)的奇偶性可得,【題目詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【題目點(diǎn)撥】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)11、C【解題分析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【題目詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【題目點(diǎn)撥】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.12、D【解題分析】
利用是偶函數(shù)化簡(jiǎn),結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【題目詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【題目點(diǎn)撥】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-8【解題分析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【題目詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時(shí),在軸截距最大本題正確結(jié)果:【題目點(diǎn)撥】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.14、【解題分析】
變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【題目詳解】的展開式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【題目點(diǎn)撥】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、【解題分析】
由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【題目詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【題目點(diǎn)撥】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.16、5【解題分析】
△PMF的周長(zhǎng)最小,即求最小,過做拋物線準(zhǔn)線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【題目詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點(diǎn),P為C上一點(diǎn),M(﹣4,3),拋物線C:x2=8y的焦點(diǎn)為F(0,2),準(zhǔn)線方程為y=﹣2.過作準(zhǔn)線的垂線,垂足為,則有,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立,所以△PMF的周長(zhǎng)最小值為55.故答案為:5.【題目點(diǎn)撥】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識(shí)易得最大值,然后可計(jì)算體積.【題目詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面.?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑?,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過作直線的垂線段,在所有垂線段中長(zhǎng)度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以.【題目點(diǎn)撥】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵.18、(1)e;(2)2.【解題分析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【題目詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對(duì)稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),,又,當(dāng)時(shí),,曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,而,故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時(shí),;當(dāng)時(shí),,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因?yàn)椋?,又因?yàn)樵谑菧p函數(shù).所以當(dāng)時(shí),.所以正整數(shù)的最小值為2.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計(jì)算能力.19、(1);(2)【解題分析】
(1)將有兩個(gè)零點(diǎn)轉(zhuǎn)化為方程有兩個(gè)相異實(shí)根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問題轉(zhuǎn)化為對(duì)一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【題目詳解】(1)有兩個(gè)零點(diǎn)關(guān)于的方程有兩個(gè)相異實(shí)根由,知有兩個(gè)零點(diǎn)有兩個(gè)相異實(shí)根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為;(2)當(dāng)時(shí),,原命題等價(jià)于對(duì)一切恒成立對(duì)一切恒成立.令令,,則在上單增又,,使即①當(dāng)時(shí),,當(dāng)時(shí),,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實(shí)數(shù)的取值范圍為.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.20、(1);(2).【解題分析】
(1)由可得出,兩式作差可求得數(shù)列的通項(xiàng)公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項(xiàng)的值.【題目詳解】(1)對(duì)任意的,由得,兩式相減得,因此,數(shù)列的通項(xiàng)公式為;(2)由(1)得,則.當(dāng)時(shí),,即,;當(dāng)時(shí),,即,.所以,數(shù)列的最小項(xiàng)為.【題目點(diǎn)撥】本題考查利用與的關(guān)系求通項(xiàng),同時(shí)也考查了利用數(shù)列的單調(diào)性求數(shù)列中的最小項(xiàng),考查推理能力與計(jì)算能力,屬于中等題.21、(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【解題分析】
(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP|?|AQ|的值.【題目詳解】(Ⅰ)直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù)).設(shè)N(ρ,θ),M(ρ1,θ1),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 分水嶺區(qū)腦梗死的臨床護(hù)理
- 2025年婁底駕校考試貨運(yùn)從業(yè)資格證模擬考試
- 2025年廣東貨運(yùn)駕駛從業(yè)資格考試題庫(kù)模擬考試
- 2025年克拉瑪依駕駛資格證模擬考試
- 促進(jìn)新質(zhì)生產(chǎn)力
- 揚(yáng)州環(huán)境資源職業(yè)技術(shù)學(xué)院《護(hù)理學(xué)基礎(chǔ)下》2023-2024學(xué)年第二學(xué)期期末試卷
- 《城市軌道交通票務(wù)工作》課件-項(xiàng)目四 值班員票務(wù)管理 關(guān)站后票務(wù)作業(yè)程序
- 《兵工企業(yè)常用焊接方法與設(shè)備使》課件-聯(lián)合型
- 2025-2030婦科治療儀市場(chǎng)發(fā)展現(xiàn)狀調(diào)查及供需格局分析預(yù)測(cè)報(bào)告
- 毛發(fā)種植的臨床護(hù)理
- 2023年標(biāo)準(zhǔn)化工程師考試真題模擬匯編(共402題)
- 8.1陶瓷器及宋代五大名窯(全國(guó)導(dǎo)游基礎(chǔ)知識(shí)-第五版-)
- 中等職業(yè)學(xué)校語(yǔ)文課程標(biāo)準(zhǔn)(2020年版)(word精排版)
- 托管專項(xiàng)施工方案
- 汽車產(chǎn)品可靠性工程框架
- 風(fēng)電項(xiàng)目開發(fā)流程教學(xué)課件
- 泌尿外科前列腺增生一病一品
- 2022公務(wù)員錄用體檢操作手冊(cè)(試行)
- GB/T 3785.2-2023電聲學(xué)聲級(jí)計(jì)第2部分:型式評(píng)價(jià)試驗(yàn)
- 民航重大安全隱患判定標(biāo)準(zhǔn)(試行)
- 產(chǎn)品思維到用戶思維
評(píng)論
0/150
提交評(píng)論