黑龍江省大慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
黑龍江省大慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
黑龍江省大慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
黑龍江省大慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
黑龍江省大慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省大慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若,使得,則實數(shù)的取值范圍是()A. B.C. D.2.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.3.若直線被圓截得的弦長為4,則的最大值是()A. B.C.1 D.24.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是5.設(shè)為實數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓6.某學(xué)校的校車在早上6:30,6:45,7:00到達(dá)某站點,小明在早上6:40至7:10之間到達(dá)站點,且到達(dá)的時刻是隨機(jī)的,則他等車時間不超過5分鐘的概率是()A. B.C. D.7.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C.與相等 D.8.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標(biāo)原點的對稱點為,且,,則橢圓方程為()A. B.C. D.9.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.10.設(shè)實數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.811.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)12.已知雙曲線,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖:二面角等于,是棱上兩點,分別在半平面內(nèi),,則的長等于__________.14.定義在R上的函數(shù)滿足,其中為自然對數(shù)的底數(shù),,則滿足的a的取值范圍是__________.15.已知函數(shù)有且僅有兩個不同的零點,則實數(shù)的取值范圍是__________.16.某市開展“愛我內(nèi)蒙,愛我家鄉(xiāng)”攝影比賽,9位評委給參賽作品A打出的分?jǐn)?shù)如莖葉圖所示,記分員算得平均分為91,復(fù)核員在復(fù)核時,發(fā)現(xiàn)一個數(shù)字(莖葉圖中的x)無法看清,若記分員計算無誤,則數(shù)字x應(yīng)該是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)年月日,中國選手楊倩在東京奧運(yùn)會女子米氣步槍決賽由本得冠軍,為中國代表團(tuán)攬入本屆奧運(yùn)會第一枚金牌.受奧運(yùn)精神的鼓舞,某射擊俱樂部組織名射擊愛好者進(jìn)行一系列的測試,并記錄他們的射擊得分(單位:分),將所得數(shù)據(jù)整理得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中的值,并估計該名射擊愛好者的射擊平均得分(求平均值時同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)若采用分層抽樣的方法,從得分高于分的射擊愛好者中隨機(jī)抽取人調(diào)查射擊技能情況,再從這人中隨機(jī)選取人進(jìn)行射擊訓(xùn)練,求這人中至少有人的分?jǐn)?shù)高于分的概率.18.(12分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(Ⅰ)證明:平面;(Ⅱ)點在棱上,且,證明:平面19.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l方程20.(12分)已知等差數(shù)列滿足:,,數(shù)列的前n項和為(1)求及;(2)設(shè)是首項為1,公比為3的等比數(shù)列,求數(shù)列的前項和21.(12分)二項式展開式中第五項的二項式系數(shù)是第三項系數(shù)的4倍.求:(1);(2)展開式中的所有的有理項.22.(10分)如圖,在四棱錐中,底面是矩形,,,,,為的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點睛】結(jié)論點睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時要注意全稱量詞與存在量詞對題意的影響.等價轉(zhuǎn)化如下:(1),,使得成立等價于(2),,不等式恒成立等價于(3),,使得成立等價于(4),,使得成立等價于2、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B3、A【解析】根據(jù)弦長求得的關(guān)系式,結(jié)合基本不等式求得的最大值.【詳解】圓的圓心為,半徑為,所以直線過圓心,即,由于為正數(shù),所以,當(dāng)且僅當(dāng)時,等號成立.故選:A4、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.5、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據(jù)拋物線標(biāo)準(zhǔn)方程的特征曲線C不可能是拋物線,故選項A正確;對B:當(dāng)時,曲線C為雙曲線,故選項B錯誤;對C:當(dāng)時,曲線C為圓,故選項C錯誤;對D:當(dāng)且時,曲線C為橢圓,故選項D錯誤;故選:A.6、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B7、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D8、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時,關(guān)鍵是求解基本量,,.9、A【解析】利用等比數(shù)列的通項公式可得,結(jié)合條件即求.【詳解】設(shè)等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.10、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當(dāng)直線經(jīng)過點時有最小值,由得,所以的最小值為.故選:B.11、C【解析】根據(jù)確定平面的條件可對每一個選項進(jìn)行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C12、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,二面角等于,根據(jù),結(jié)合向量的運(yùn)算,即可求解.【詳解】由題意,二面角等于,可得向量,,因為,可得,所以.故答案為:14、【解析】設(shè),求出其導(dǎo)數(shù)結(jié)合條件得出在上單調(diào)遞減,將問題轉(zhuǎn)化為求解,由的單調(diào)性可得答案.【詳解】設(shè),則由,則所以在上單調(diào)遞減.又由,即,即,所以故答案為:15、【解析】函數(shù)有兩個不同零點即y=a與g(x)=圖像有兩個交點,畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個不同的零點,令,則y=a與g(x)=圖像有兩個交點,∵,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,∴當(dāng)時,,作出函數(shù)與的圖象,∴當(dāng)時,y=a與g(x)有兩個交點﹒故答案為:﹒16、1【解析】由平均數(shù)列出方程,求出x的值.【詳解】由題意得:,解得:.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),平均分為;(2).【解析】(1)利用頻率直方圖中所有矩形面積之和為可求得的值,將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,將所得結(jié)果全部相加可得平均成績;(2)分析可知所抽取的人中,成績在內(nèi)的有人,分別記為、、、,成績在內(nèi)的有人,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:根據(jù)頻率分布直方圖得到,解得.這組樣本數(shù)據(jù)平均數(shù)為.【小問2詳解】解:根據(jù)頻率分布直方圖得到,分?jǐn)?shù)在、內(nèi)的頻率分別為、,所以采用分層抽樣的方法從樣本中抽取的人,成績在內(nèi)的有人,分別記為、、、,成績在內(nèi)的有人,分別記為、,記“人中至少有人的分?jǐn)?shù)高于分”為事件.則所有的基本事件有、、、、、、、、、、、、、、,共種.事件包含的基本事件有、、、、、、、、,共種,所以.18、(Ⅰ)證明見解析(Ⅱ)證明見解析【解析】(Ⅰ)證明和得到平面.(Ⅱ)根據(jù)相似得到證明平面.【詳解】(Ⅰ)如圖,連接.∵底面為菱形,且,∴三角形正三角形.∵為的中點,∴.又∵平面,平面,∴.∵,平面,∴平面.(Ⅱ)連接交于點,連接.∵為的中點,∴在底面中,,∴.∴,∴在三角形中,.又∵平面,平面,∴平面.【點睛】本題考查了線面垂直和線面平行,意在考查學(xué)生的空間想象能力和推斷能力.19、(1)(2)或【解析】(1)將橢圓化為標(biāo)準(zhǔn)方程,求得,進(jìn)而求得離心率;(2)設(shè)直線,,,與橢圓聯(lián)立,借助韋達(dá)定理及弦長公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設(shè)直線,,聯(lián)立,化簡得,則,解得,,由弦長公式知,,解得,故直線或20、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用分組求和求數(shù)列的前項和.【詳解】(1)設(shè)等差數(shù)列的公差為d,因為,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【點睛】(1)本題主要考查等差數(shù)列的通項和前n項和求法,考查分組求和和等比數(shù)列的求和公式,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.(2)有一類數(shù)列,它既不是等差數(shù)列,也不是等比數(shù)列,但是數(shù)列是等差數(shù)列或等比數(shù)列或常見特殊數(shù)列,則可以將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比數(shù)列或常見的特殊數(shù)列,然后分別求和,再將其合并即可.這叫分組求和法.21、(1)6;(2),,【解析】(1)先得到二項展開式的通項,再根據(jù)第五項的二項式系數(shù)是第三項系數(shù)的4倍,建立方程求解.(2)根據(jù)(1)的通項公式求解.【詳解】(1)二項展開式的通項.依題意得,,所以,解得.(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論