黑龍江省哈爾濱第三中學(xué)2023年數(shù)學(xué)高二上期末檢測(cè)模擬試題含解析_第1頁(yè)
黑龍江省哈爾濱第三中學(xué)2023年數(shù)學(xué)高二上期末檢測(cè)模擬試題含解析_第2頁(yè)
黑龍江省哈爾濱第三中學(xué)2023年數(shù)學(xué)高二上期末檢測(cè)模擬試題含解析_第3頁(yè)
黑龍江省哈爾濱第三中學(xué)2023年數(shù)學(xué)高二上期末檢測(cè)模擬試題含解析_第4頁(yè)
黑龍江省哈爾濱第三中學(xué)2023年數(shù)學(xué)高二上期末檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省哈爾濱第三中學(xué)2023年數(shù)學(xué)高二上期末檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,若.則的值是()A. B.C. D.2.已知雙曲線離心率為2,過點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.3.已知拋物線的焦點(diǎn)為,直線過點(diǎn)與拋物線相交于兩點(diǎn),且,則直線的斜率為()A. B.C. D.4.雙曲線的漸近線方程是()A. B.C. D.5.已知點(diǎn)是雙曲線的左焦點(diǎn),定點(diǎn),是雙曲線右支上動(dòng)點(diǎn),則的最小值為().A.7 B.8C.9 D.106.經(jīng)過直線與直線的交點(diǎn),且平行于直線的直線方程為()A. B.C. D.7.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn),為銳角,且,則()A. B.C. D.8.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.9.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長(zhǎng)成大樹的概率B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點(diǎn)的概率C.在區(qū)間[1,4]上任取一數(shù),求這個(gè)數(shù)大于1.5概率D.同時(shí)擲兩枚質(zhì)地均勻的骰子,求向上的點(diǎn)數(shù)之和是5的概率10.已知的三個(gè)頂點(diǎn)是,,,則邊上的高所在的直線方程為()A. B.C. D.11.若展開式的二項(xiàng)式系數(shù)之和為,則展開式的常數(shù)項(xiàng)為()A. B.C. D.12.已知直線,,若,則實(shí)數(shù)()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率______.14.已知直線與之間的距離為,則__________15.在空間直角坐標(biāo)系中,已知點(diǎn)A,若點(diǎn)P滿足,則_______16.已知拋物線C:的焦點(diǎn)F到準(zhǔn)線的距離為4,過點(diǎn)F和的直線l與拋物線C交于P,Q兩點(diǎn).若,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值18.(12分)已知點(diǎn),直線:,直線m過點(diǎn)N且與垂直,直線m交圓于兩點(diǎn)A,B.(1)求直線m的方程;(2)求弦AB的長(zhǎng).19.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(diǎn)(1)求證:平面平面;(2)求二面角的正切值20.(12分)已知橢圓C:,右焦點(diǎn)為F(,0),且離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)M,N是橢圓C上不同的兩點(diǎn),且直線MN與圓O:相切,若T為弦MN的中點(diǎn),求|OT||MN|的取值范圍21.(12分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點(diǎn),求證PC⊥平面AEF22.(10分)已知橢圓過點(diǎn),且離心率,為坐標(biāo)原點(diǎn).(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點(diǎn),直線與軸相交于點(diǎn),且滿足,若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由,轉(zhuǎn)化為,再由求解.【詳解】因?yàn)閿?shù)列滿足,所以,即,因?yàn)?,所以,所以,故選:D2、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C3、B【解析】設(shè)直線傾斜角為,由,及,可求得,當(dāng)點(diǎn)在軸上方,又,求得,利用對(duì)稱性即可得出結(jié)果.【詳解】設(shè)直線傾斜角為,由,所以,由,,所以,當(dāng)點(diǎn)在軸上方,又,所以,所以由對(duì)稱性知,直線的斜率.故選:B.4、A【解析】先將雙曲線的方程化為標(biāo)準(zhǔn)方程得,再根據(jù)雙曲線漸近線方程求解即可.【詳解】解:將雙曲線的方程化為標(biāo)準(zhǔn)方程得,所以,所以其漸近線方程為:,即.故選:A.5、C【解析】設(shè)雙曲線的右焦點(diǎn)為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點(diǎn)共線時(shí)取得最小值即可得解.【詳解】∵是雙曲線的左焦點(diǎn),∴,,,,設(shè)雙曲線的右焦點(diǎn)為M,則,由雙曲線的定義可得,則,所以,當(dāng)且僅當(dāng)A、P、M三點(diǎn)共線時(shí),等號(hào)成立,因此,的最小值為9.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長(zhǎng)度和、差的最值,都可以通過相應(yīng)的圓錐曲線的定義分析問題;(2)圓外一點(diǎn)到圓上的點(diǎn)的距離的最值,可通過連接圓外的點(diǎn)與圓心來分析求解.6、B【解析】求出兩直線的交點(diǎn)坐標(biāo),可設(shè)所求直線的方程為,將交點(diǎn)坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點(diǎn)坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.7、C【解析】根據(jù)角終邊上有一點(diǎn),得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【詳解】因?yàn)榻墙K邊上有一點(diǎn),所以,又因?yàn)闉殇J角,且,所以,所以,故選:C8、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.9、D【解析】A、B兩項(xiàng)中的基本事件的發(fā)生不是等可能的;C項(xiàng)中基本事件的個(gè)數(shù)是無限多個(gè);D項(xiàng)中基本事件的發(fā)生是等可能的,且是有限個(gè).故選D【考點(diǎn)】古典概型的判斷10、B【解析】求出邊上的高所在的直線的斜率,再利用點(diǎn)斜式方程可得答案.【詳解】因?yàn)?,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.11、C【解析】利用二項(xiàng)式系數(shù)的性質(zhì)求得的值,再利用二項(xiàng)式展開式的通項(xiàng)公式,求得結(jié)果即可.【詳解】解:因?yàn)檎归_式的二項(xiàng)式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項(xiàng)為.故選:C.12、D【解析】根據(jù)兩條直線的斜率相等可得結(jié)果.【詳解】因?yàn)橹本€,,且,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線方程直接可得離心率.【詳解】由,可得,,故,離心率,故答案為:.14、或##或【解析】利用平行直線間距離公式構(gòu)造方程求解即可.【詳解】方程可化為:,由平行直線間距離公式得:,解得:或.故答案為:或.15、【解析】設(shè),表示出,,根據(jù)即可得到方程組,解得、、,即可求出的坐標(biāo),即可得到的坐標(biāo),最后根據(jù)向量模的坐標(biāo)表示計(jì)算可得;【詳解】解:設(shè),所以,,因?yàn)?,所以,所以,解得,即,所以,所以;故答案為?6、9【解析】根據(jù)拋物線C:的焦點(diǎn)F到準(zhǔn)線的距離為4,求得拋物線方程.再由和,得到點(diǎn)P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立求得的坐標(biāo),再由兩點(diǎn)間距離公式求解.【詳解】由拋物線C:的焦點(diǎn)F到準(zhǔn)線的距離為4,所以,所以拋物線方程為.因?yàn)?,,所以點(diǎn)P的縱坐標(biāo)為1,代入拋物線方程,可得點(diǎn)P的橫坐標(biāo)為,不妨設(shè),則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點(diǎn)睛】本題主要考查拋物線的方程與性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標(biāo)系,利用向量法求線面角.【小問1詳解】因?yàn)镼為AD的中點(diǎn),,所以,又因?yàn)槠矫娴酌鍭BCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標(biāo)系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點(diǎn)可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個(gè)法向量為,所以,所以直線PB與平面MQB所成角的正弦值為18、(1)(2)【解析】(1)求出斜率,用點(diǎn)斜式求直線方程;(2)利用垂徑定理求弦長(zhǎng).【小問1詳解】因?yàn)橹本€:,所以直線的斜率為.因?yàn)橹本€m過點(diǎn)N且與垂直,所以直線的斜率為,又過點(diǎn),所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長(zhǎng)19、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點(diǎn),DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點(diǎn),DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz:則,則設(shè)為平面BDM的法向量,則,取,取平面BCD的法向量為,設(shè)二面角的大小為θ,則,∴.20、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當(dāng)直線的斜率不存在或?yàn)?,易求,當(dāng)直線MN斜率存在且不為0時(shí),設(shè)直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當(dāng)直線MN斜率為0時(shí),不妨取直線MN為??=,則,此時(shí),則;當(dāng)直線MN斜率不存在,不妨取直線MN為x=,則,此時(shí),則;當(dāng)直線MN斜率存在且不為0時(shí),設(shè)直線MN的方程為:,,因?yàn)橹本€MN與圓相切,所以,即,又因?yàn)橹本€MN與橢圓C交于M,N兩點(diǎn):由,得,則,所以MN中點(diǎn)T坐標(biāo)為,則,,所以又,當(dāng)且僅當(dāng),即取等號(hào),∴|OT||MN|;綜上所述:|OT|?|MN|的取值范圍為[,3].21、(1)(2)見解析.【解析】(1)在中,,求得,由此能求出四棱錐的體積;(2)由平面,證得和,由此利用線面垂直的判定定理,即可證得平面.試題解析:(1)在中,.在中,.則.(2),為的中點(diǎn),.平面.平面.為中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論